

1
American Institute of Aeronautics and Astronautics

A BLOCK LU-SGS IMPLICIT DUAL TIME-STEPPING ALGORITHM
FOR HYBRID DYNAMIC MESHES

L.P. Zhang† and Z.J. Wang‡

Department of Mechanical Engineering
Michigan State University, East Lansing, MI 48824

ABSTRACT

 A block lower-upper symmetric Gauss-Seidel (BLU-SGS) implicit dual time-stepping method is developed for
moving body problems with hybrid dynamic grids. To simulate flows over complex configurations, a hybrid grid
method is adopted in this paper. Body-fitted quadrilateral (quad) grids are generated first near solid bodies. An
adaptive Cartesian mesh is then generated to cover the entire computational domain. Cartesian cells which overlap
the quad grids are removed from the computational domain, and a gap is produced between the quad grids and the
adaptive Cartesian grid. Finally triangular grids are used to fill this gap. With the motion of moving bodies, the
quad grids move with the bodies, while the adaptive Cartesian grid remains stationary. Meanwhile, the triangular
grids are deformed according to the motion of solid bodies with a ‘spring’ analogy approach. If the triangular grids
become too skewed, or the adaptive Cartesian grid crosses into the quad grids, the triangular grids are regenerated.
Then the flow solution is interpolated from the old to the new grid. The fully implicit equation is solved using a dual
time-stepping solver. A Godunov-type scheme with Roe’s flux splitting is used to compute the inviscid flux. Several
sub-iteration schemes are investigated in this study. Both supersonic and transonic unsteady cases are tested to
demonstrate the accuracy and efficiency of the method.

† Visiting Scholar, Computational Aerodynamics Institute, China Aerodynamics Research and Development Center,
P. O. Box 211, Mianyang, Sichuan, 621000, China. zhangla@egr.msu.edu; or zhanglp@my-public.sc.cninfo.net
‡ Associate Professor, AIAA Senior Member. zjw@egr.msu.edu

1. INTRODUCTION

 The use of unstructured grids in computational
fluid dynamics (CFD) has become widespread during
the last two decades due to their ability to discretize
arbitrarily complex geometries and the flexibility in
supporting solution-based grid adaptations to enhance
the solution accuracy and efficiency [1-6]. In the early
days of unstructured grid development, triangular/
tetrahedral grids were employed primarily in dealing
with complex geometries. Recently, mixed or hybrid
grids including many different cell types have gained
popularity because of the improved efficiency and
accuracy over pure tetrahedral grids. For example,
hybrid prism/tetrahedral grids [7], mixed grids
including tets/prism/pyramid/hex cells [8], and adaptive
Cartesian grid methods [9-15] have been used in many
applications with complex configurations. In addition,
solution algorithms for computing steady flows on
unstructured and hybrid grids have evolved to a high
degree of sophistication. The state-of-the-art spatial
discretization algorithm is probably the second-order
Godunov-type finite volume method [12]. For time
integration, explicit algorithms such as multi-stage
Runge-Kutta schemes are the easiest to implement.
Convergence acceleration techniques such as local
time-stepping and implicit residual smoothing [3] have
also been employed in this context. However, for large-
scale problems and especially for the solution of

viscous turbulent flows, implicit schemes are required
to speed up the convergence rate. In the last decade,
significant progress has been made in the development
of implicit numerical algorithms for steady flow
simulations on unstructured grids [16-19]. For example,
a block lower-upper symmetric Gauss-Seidel (BLU-
SGS) scheme [19] was shown to dramatically speed up
the convergence of complex turbulent flow
computations with arbitrary grids, while its memory
requirement is comparable to a point-implicit scheme.
 The success demonstrated by unstructured grids for
steady flow problems has prompted their applications to
unsteady moving boundary flow problems. For a
moving boundary flow problem, the computational
grids must move with the moving boundaries. The most
straightforward approach is to deform the
computational grid locally using a spring-analogy type
algorithm to follow the motion of the moving
boundaries [20]. The approach is very efficient because
it does not require solution interpolation. A
disadvantage of the approach is that the grid integrity
can be destroyed by large motions or shear-type of
boundary motions. To remedy this drawback, local
remeshing can be applied whenever the grid becomes
too skewed. With local remeshing, solution
interpolations from the old to the new grid become
necessary. The hybrid approach of combining grid
deformation with grid local remeshing seems to be the

2
American Institute of Aeronautics and Astronautics

state-of-the-art in handling moving boundary problems,
and has been used successfully for a variety of
applications [21]. Most of the simulations for moving
boundary problems are performed with unstructured
triangular or tetrahedral grids only [20-23]. In this
paper, we advocate a hybrid adaptive Cartesian/quad/
triangular grid approach for dynamic moving boundary
flow problems in 2D (In 3D, the approach becomes
adaptive Cartesian/prism/tetrahedral grid based). Body-
fitted quad grids are generated first near solid bodies to
resolve viscous boundary layers. An adaptive Cartesian
grid is then generated to cover the outer domain, while
triangular grids are used to fill the gap between the
quad and Cartesian grids. If the bodies move, the quad
grids move with the bodies, while the Cartesian grid
remains stationary. Meanwhile, the unstructured grids
are deformed according to the motions of the bodies
with a ‘spring’ analogy approach. If the triangular grids
become too skewed because of the deformation, the
triangular grids are then regenerated, and the solutions
are also interpolated from the old to the new grids. The
advantages of above hybrid grid method include: 1)
more efficient than the fully unstructured triangular
grids, especially for viscous flow simulations; 2) more
accurate for viscous flow computations because of the
high-quality grids in the boundary layer; 3) Only a
small local region needs to be remeshed resulting in
less data interpolation and less errors caused by data
interpolations.
 The solution efficiency of the time-integration
algorithm for a moving boundary flow problem
becomes more important than for a steady problem
because the unsteady residual should be driven close to
zero at each time step. For viscous flow problems with
highly clustered computational grids, an explicit time-
marching method is clearly out of the question because
of the time-step limit imposed by an explicit scheme.
Therefore, only implicit schemes are considered in this
study, while an explicit scheme may be used for
comparison purposes. As we mentioned earlier, one has
to drive the unsteady residual to zero (or at least to
truncation error) at each time step when an implicit
scheme is used to compute unsteady flows. Many of the
successful implicit solvers for steady flows problems
can be used to converge the unsteady residual, and there
are successful examples in the literature [21]. The
convergence rate of this “inner” solver determines the
overall efficiency of the solution algorithm. In this
study, we will extend and test the successful BLU-SGS
scheme [19] to hybrid dynamic grids for moving
boundary problems. Comparisons will also be made
between explicit, point implicit and BLU-SGS inner
iteration solvers.
 The paper is organized as follows. In the next
section, the hybrid adaptive Cartesian/quad/triangular
grid generation approach will be presented, together

with illustration examples. After that, the finite volume,
Godunov-type second-order dual time-stepping method
for dynamic grids is described. Details of the BLU-SGS
inner iteration solver are presented. In Section 4,
several unsteady moving boundary problems are
computed. Temporal and spatial refinement studies are
performed to ensure the computational solutions are
time-step and grid independent. Computational results
are compared with experimental data whenever
possible. Finally conclusions from this study are
summarized in Section 5.

2. GRID GENERATION STRATEGY

 In this study, a hybrid adaptive Cartesian/quad/
triangular grid approach is adopted to discretize a
complex computational domain. Body-fitted quad grids
are generated first near solid bodies with an advancing
layer method [6,7] by marching in the surface normal
direction. When the aspect ratio of the quad cell reaches
a pre-defined scale (for example, 0.6) or the width of
remaining gap between solid bodies is only one or two
times of the local grid size, the local advancing layer
procedure stops. Then an adaptive Cartesian grid is
generated to cover the outer domain by a modified
quadtree method [24]. This adaptive Cartesian grid is
generated by recursively subdividing a large root cell
covering the entire computational domain. The grid
resolution of the adaptive Cartesian grid automatically
matches that of the quad grids near the outer layer of
the quad grids. Of course, Cartesian cells close and
inside the last advancing layer of the quad grids are
removed from the computational domain. Usually the
gap width between the quad grid and the adaptive
Cartesian grid is set to several times of the local grid
size (usually 6 times or less). Then triangular grids are
used to fill the gap using an advancing front method
(AFM) [25-26]. To control the grid distribution
smoothly, a structured background grid [27] is
employed, and some controlling point or line sources
are specified in the field according to the configuration
of interest. Finally, a ‘spring’ analogy approach is
employed to smooth the initial grids.
 Due to the motion of the moving boundaries, the
grids at time level n is different from that at time level
n+1. The grid at time n+1 is usually generated by
deforming the grid at time n with the grid connectivity
or topology remaining the same. With our hybrid
adaptive Cartesian/quad/triangular grid approach, we
adopt the following strategy. The quad grids around
moving bodies move (translate or rotate) with the
moving bodies, while the adaptive Cartesian grid
remains stationary. Meanwhile, the unstructured
triangular grids are deformed according to the motions
of the moving bodies with a ‘spring’ analogy approach

3
American Institute of Aeronautics and Astronautics

[20]. Because the quad grids are not deformed, the
quality of the quad grids remains the same, which is
obviously a benefit for computing the viscous boundary
layer. In addition, the outer adaptive Cartesian grid
always keeps the original topology. When large
motions occur, the quad grids may cross into the
original adaptive Cartesian grid, or the triangular grids
become too skewed. In this case, a remeshing step is
undertaken. The holes in the adaptive Cartesian are
regenerated based on the outer boundary of the quad
grids. New triangular grids are generated to fill the gap
between the adaptive Cartesian and quad grids. The
flow solutions are also interpolated from the old to the
new grids at the time when the remeshing step is taken.
Note that this remeshing step is always local, and
occurs near the triangular grids. Therefore, this
approach is expected to be very efficient, and accurate.

Several examples are used here to illustrate the
basic grid generation algorithm. The first example is a
fighter aircraft with a store. The store separates from
the fighter with a given trajectory. Fig. 1a shows the
initial hybrid grid over the configuration, while Fig.1b
displays the close-up view near the body. Note that the
grids are very smooth in the entire computational
domain, and the grid quality is very good even in the
narrow gap between the fighter and the store. Fig. 1c
and Fig. 1d show the grids when the store is far away
from the fighter. During the separation, the body-fitted
quad grid around the store moves with the store. Note
that the grid quality is still satisfactory even after very
large motions.
 The second example is a double airfoil
configuration, which is made up by the authors to test
the ability of present hybrid grid generation method in
handling narrow gaps and shear-type of grid motions.
The main airfoil is a RAE2822 airfoil, and the small
one is a NACA0012, which is scaled to one-third of the
main chord. Fig. 2a shows the hybrid grid over the
combined configuration. Figs. 2b displays the close-up
view of the same grid, while Fig. 2c and Fig. 2d present
the hybrid grids when the small airfoil separates away
from the cavity. Once again, the present hybrid grid
generator produces high-quality grids for this quite
complex multi-body geometry.

3. NUMERICAL METHOD

3.1. Finite Volume Method for Dynamic Grids
 The time-dependent Reynolds-averaged Navier-
Stokes equations for dynamic grids can be expressed in
the integral form as

()() ()∫∫∫ =⋅−+
∂
∂

S

v

S
g

i

V

dSQFdSQQFQdV
t

nv (3.1)

where S is the surface surrounding the control volume
V, n is the out-going unit normal of S, vg is the velocity
of S, and Q is the vector of conservative variables, Fi is
the inviscid and Fv the viscous flux vectors. The eddy
viscosity for turbulent flow is calculated by the standard
κ-ε turbulence model with a wall function [13].
 If we integrate Equation (3.1) in a polygonal
control volume Vi, we obtain

() ()() ()∑∑ =−+
∂
∂

f
f

v
ff

f
fgn

i
i dSQFdSQvQFQV

t

(3.2)
where the summation index f represents all the faces
surrounding control volume Vi, and nv ⋅= ggnv . The
inviscid flux is calculated using Roe’s approximate
Riemann solver with reconstructed state variables at
both sides of a face. A least square linear reconstruction
scheme of the primitive variables is used.
Venkatakrishnan’s limiter [28] is employed to make the
scheme monotone. For the viscous term, a second-order
centered scheme is used here. Other details of the flow
solver are contained in [12-13].
 The conservation of a constant flow is a necessary
condition for any viable numerical scheme. Otherwise
mass, momentum or energy would be produced
unphysically by the numerical simulation. If we
examine Equation (3.2), in order to preserve a uniform
free stream, we must have:

∑=∂
∂

f
fgn

i dSv
t

V (3.3)

 This is the so-called Geometric Conservative Law
(GCL) [29-30] in its semi-discretized form. Assume
that the grid velocity is computed at time level n+1/2.
Then we can us the following time discretization to
achieve second-order accuracy

∑=∆
−+

f
fgn

n
i

n
i dSv

t
VV 1

. (3.4)

 Instead of having the grid velocity vgn satisfy
Equation (3.4), we utilize the equation to calculate vgn.
In this case, we are absolutely sure that GCL is
guaranteed. To this end, we employ a simple fact: the
volume that a cell sweeps over is equal to the total of
the volumes swept by its faces, i.e.,

∑∆=−+

f
f

n
i

n
i VVV 1 (3.5)

where ∆Vf represents the volume swept by face f.
Comparing Equations (3.4) and (3.5), we arrive at the
following equation:

f

f
gnfgnf tdS

V
vordStvV

∆

∆
=∆=∆ (3.6)

4
American Institute of Aeronautics and Astronautics

3.2. Time Integration Algorithm
 Once the fluxes are evaluated for each cell face
using the preceding finite volume scheme, the semi-
discrete form of the governing equations is then
integrated in time. For convenience, we rewrite
Equation (3.2) as the following nonlinear system:

()
0)(=+

∂
∂

QR
t

QV
i

i (3.7)

where Ri is the residual given by
() ()()∑ −−=

f
ff

v
gn

i
i dSQFQvQFQR)((3.8)

 Then a family of implicit schemes for Equation
(3.7) can be constructed as:

0)()()1(1
11

=+−+
∆
− +

++
n

i
n

i

n
i

n
i

n
i

n
i QRQR

t
VQVQ θθ (3.9)

 If θ = 0, the scheme is the backward Euler method.
If θ = 1/2, the resulting scheme known as the Crank-
Nicholson method is second-order accurate in time.
 Equation (3.9) represents a nonlinear system of
coupled equations, which has to be solved at each time
step. It can be solved by introducing a pseudo-time
variable τ,

() () 0* =+
∂

∂
QR

QV
i

i

τ
 (3.10)

and ‘time-marching’ the solution using local pseudo-
time ∆τ, until Q converges to Qn+1. Here Q is the
approximation of Qn+1 and the unsteady residual Ri

*(Q)
is defined as

() () ()n
ii

n
i

n
i

n
ii

i QRQR
t

VQVQQR θθ +−+
∆
−

=
+

)1(
1

* (3.11)

 Obviously, Equation (3.10) can be solved by using
a variety of numerical schemes including the explicit
multi-stage Runge-Kutta method. Of course the best
efficiency is expected to be achieved by an implicit
inner iteration schemes.

Implicit block LU-SGS inner iteration scheme
 Chen and Wang developed a block LU-SGS (BLU-
SGS) method for steady flows on arbitrary grids [19],
which showed superior convergence property for steady
flow simulations. Here we extend this method to
unsteady flow computations on moving grids. For
simplicity of presentation, we choose θ = 1.
Discretizing the pseudo-time in (3.10) with a backward
Euler scheme, we obtain the following equation

() ()() ()

()() ()()[] 0~ 11

1111

=−+
∆

−
+

∆
−

∑ ++

++++

f
f

mv
f

mi
f

n
i

n
i

m
i

n
i

m
i

m
i

n
i

dSQFQF
t

QVQVQQV
τ (3.12)

where indices n, m indicates the real time and the
pseudo-time levels. Here we let Q(0) = Qn and the
converged solution is then Qn+1, and

()() ()() gn
mmimi vQQFQF)(~

−= . (3.13)
 Equation (3.12) can be rewritten further in the
following delta form:

() ()

() ()[] ()()m
if

f
f

mvmi

m
i

n
i

m
i

n
i

QRdSFF
t
QVQV

*

11

~ −=∆−∆+
∆
∆

+
∆
∆

∑

++

τ (3.14)

where
() ()() ()()
() ()() ()().

,~~~

1

1

mvmvmv

mimimi

QFQFF

QFQFF

−=∆

−=∆
+

+

 (3.15)

 If we assume that the inviscid and viscous fluxes
depend only on the state variables at the two cells
sharing the face, the flux differences can be
approximated with the following formula

() () ()() () ()()[]
() ()() () ()()[]m

j
m

i
im

j
m

i
i

m
j

m
i

im
j

m
i

imi

QQFQQF

QQFQQFF

,~,~
,~,~~

1

111

−+

−=∆
+

+++

 (3.16)

and
() () ()() () ()()[]

() ()() () ()()[]m
j

m
i

vm
j

m
i

v

m
j

m
i

vm
j

m
i

vmv

QQFQQF

QQFQQFF

,,

,,
1

111

−+

−=∆
+

+++

 (3.17)

where the subscripts i and j denote the current cell
under consideration and its neighbor cell that shares
face f, respectively. Linearizing the first terms on the
right hand sides of Equations (3.16) and (3.17), we have

() ()() () ()() ()m
i

i

i
m
j

m
i

im
j

m
i

i Q
Q
FQQFQQF ∆
∂
∂

≈− +++
~

,~,~ 111

(3.18)
() ()() () ()() ()m

i
i

v
m

j
m

i
vm

j
m

i
v Q

Q
FQQFQQF ∆
∂
∂

≈− +++ 111 ,,

(3.19)
 Substituting Equations (3.16), (3.17), (3.18) and
(3.19) back to Equation (3.14), we obtain:

()

() () ()() () ()()[]
() () ()() () ()()[]

()()m
i

f
f

f
m
j

m
i

vm
j

m
j

m
i

v

f
ff

m
j

m
i

im
j

m
j

m
i

i

m
i

QR

dSQQFQQQF

dSQQFQQQF

QD

*

,,

,~,~

−=

−∆+−

−∆++

∆

∑

∑
 (3.20)

where
() ()

f
f i

mv
f

i

mi
f

n
i

n
i dS

Q
F

Q
F

IV
t

VD ∑

∂
∂

−
∂

∂
+

∆

+
∆

=
++ ~11

τ
 (3.21)

and I is the identify matrix.
 In the original LU-SGS approach, the first order
numerical flux vectors in the left hand side of equation
(3.20) are chosen as

()()ijijji
vi QQFFFF −−+=− λ~~

2
1~ (3.22)

5
American Institute of Aeronautics and Astronautics

where λij is the spectral radius of the flux Jacobean
matrix at the cell face:

()
()ij

t
ij rrn

an
−⋅

+
++⋅=
ρ

µµλ 2v (3.23)

where n is the normal of the cell face pointing from cell
i to cell j, ri and rj are the position vectors of cell
centers of cell i and cell j, respectively, v is the velocity
vector, ρ is the density, a is the speed of sound, µ and µt
are kinematic and turbulent viscosities, respectively.
Then matrix D changes into a diagonal matrix and
equation (3.20) degenerates into a set of scalar
equations.

In order to improve the convergence rate of the
original LU-SGS, BLU-SGS keeps the diagonal block
of the implicit system, and then use forward and
backward sweeps to include the implicit contributions
from the off-diagonal blocks. The sweep procedures are
solved efficiently with an exact LU decomposition
method. More details can be found in [19].

3.3. Boundary Conditions
 In order to treat the boundary cells as transparent as
possible, a ghost cell is generated for each boundary
cell. Then the solution variables at the ghost cell are
computed from the boundary cell according to the
physical boundary condition. For a steady inviscid
flow, the velocity components at the ghost cell for a
solid wall boundary are computed as:

nyghostnxghost vnvvvnuu 2,2 −=−= (3.24)
where vn is the normal velocity given by yxn vnunv += .
Meanwhile, the density and pressure of the ghost cell
are set to be the same as those of the boundary cell. For
unsteady moving boundary problems, the condition
must be adjusted since the boundary face now is
moving. Then the normal velocity should be modified

gnyxn vvnunv −+= . Similarly for an unsteady viscous
surface boundary, the velocity components at the ghost
cell are computed using the following equation,

gnyghostgnxghost vnvvvnuu 22 +−=+−= . (3.25)
 In the far field, a characteristic analysis based on
Riemann invariants is used to determine the values of
the flow variables on the outer ghost cells. This analysis
correctly accounts for wave propagation in the far field,
which is important for rapid convergence to steady state
and serves as a ‘non-reflecting’ boundary condition for
unsteady applications.

4. NUMERICAL RESULTS

4.1. Moving Cylinder with Mach 4
 This case was selected as a validation case to test
the dynamic grid implementation. A steady state
problem of supersonic flow around a cylinder (with

respect to a reference frame fixed on the cylinder) was
simulated as a moving boundary problem of a cylinder
traveling at Mach 4 through stationary air. After the
initial transients, the flow field around the moving
cylinder should settle down, and should become
“steady” with respect to the cylinder. A major feature of
this flow problem is a bow shock ahead of the moving
cylinder. For comparison purposes, this problem was
also run in the steady mode. For the moving body
simulation, a sequence of hybrid computational grids at
different times are generated, and displayed in Fig. 3.
These grids have around a total of 11K cells, with about
2.3K quad cells, 3.7K triangular cells and 5.0K
Cartesian cells. The pressure contours at the
corresponding times are also shown in Fig. 3. Note that
a bow shock is generated from the wall when the
cylinder starts to move. Later the shock moves ahead of
the moving cylinder. Finally the bow shock remains at a
fixed location relative to the cylinder. The pressure
distributions along the cylinder surface from both the
steady state and moving body simulations are compared
in Fig. 4. It is obvious that the agreement is very good,
indicating that the implementation of the dynamic grid
solver is successful.

4.2. Inviscid Flow over an Oscillating NACA0012
Airfoil
 This unsteady test case has been used extensively
in the literature for validation and demonstration studies
because of the availability of experimental data [31].
The geometry is the well-known NACA0012 airfoil,
which undergoes harmonic pitching motion about the
quarter chord with the following time-dependent angle
of attack tam ωαα sin∆+= , where αm is the mean
angle of attack, and ∆α the oscillation amplitude. The
reduced frequency, which is an important similarity
parameter for this unsteady problem, is defined
as ∞= Uc 2ωκ , where U∞ is the free stream velocity
and c the chord length of the airfoil.
 Since the flow is attached, it is assumed inviscid.
The following flow parameters are chosen: αm = 0.016°,
∆α = 2.51°, κ = 0.0814, and 755.0=∞M . The
unsteady calculation was started from a steady-state
solution at the same Mach number with the mean angle
of attack. Several different views of the initial
computational grid is shown in Fig. 5. The hybrid grid
has a total of 8,373 cells, with 1,384 quad cells, 2,877
triangular cells, and 4,122 adaptive Cartesian cells.
Even though the flow is assumed inviscid flow, the use
of the quad cells near the moving body ensures that the
computational grid has high quality throughout the
computational domain.
 The time history of the lift coefficient vs. the time
dependent angle of attack using 16, 32 and 64 time
steps per cycle is displayed in Fig. 6. It is clear from

6
American Institute of Aeronautics and Astronautics

this figure that the computational solution is acceptable
with only 16 time steps per cycle. The solutions are
almost on top of each other when 32 and 64 steps are
taken during each cycle. Also shown is a comparison
with the experimental data of Landon [31]. Note that
the difference between the computed and the
experimental lift histories is quite small. In addition, the
present computational results agree very well with
those in [17] and [21], although they are not shown
here. A grid refinement study was also performed to
make sure that the computed solution is grid-
independent. In Fig. 7, the lift coefficient histories
computed on two different grids are shown. The coarse
grid has about 8.5K cells, while the fine grid has about
16.8K cells. Note that the solutions on the coarse and
fine grids are on top of each other.
 To demonstrate the convergence property of the
BLU-SGS inner iteration solver, we compare the
convergence histories of BLU-SGS with those of the
point implicit method and explicit Runge-Kutta
method. Fig. 8 shows the convergence in terms of the
number of inner-iterations at the first time step (starting
from the initial steady-state solution with 16 time steps
per cycle), which demonstrates the fast convergence
rate by the BLU-SGS solver.

4.3. Turbulent Flow over Oscillating NACA0012
Airfoil

The last test case we considered was a viscous
turbulent flow problem. The geometry is the same, but
the flow parameters are different than those in the last
case. The new flow parameters are: αm=4.86°,
∆α=2.44°, κ=0.0810, 6.0=∞M , Re=4.8x106. To
capture the viscous boundary layer accurately, the quad
grid is clustered near the airfoil surface. Since a wall
function is employed for the κ-ε turbulence model, the
grid resolution in the boundary layer is deemed
adequate. For the solution of the initial steady-state
flow field, the hybrid grid has a total of 14,999 grid
cells, with 7,937 quad, 3,254 triangular and 3,808
Cartesian cells. The unsteady moving body simulation
started from the steady-state solution. Then 50 time
steps are used for each cycle to capture the unsteady
features. Fig. 9a displays the computed Mach number
contours at several different angles of attack. For
comparison purposes, an inviscid simulation was also
carried out with the same flow conditions. The
computed Mach contours from this inviscid simulation
are shown in Fig. 9b for the same angles of attack. Note
that the flow fields are quite different near the airfoil,
especially at the trailing edge. The turbulent boundary
layer and the wake are visible in the viscous solutions.
The plot of the lift coefficient vs. the angle of attack is
shown in Fig. 10. Results from both the inviscid and
viscous simulations are plotted in the figure. It is

obvious that the viscous simulation agrees much better
with the experimental data [31] than the inviscid
calculation, especially at lower angle of attack. At
higher angle of attack, both the inviscid and viscous
simulations miss the experimental data, with the
inviscid simulation over-predicting and the viscous
simulation under-predicting the lift. A possible cause of
this discrepancy may be due to the inability of the
turbulence model in resolving the separated region. Fig.
11 shows the time history of the lift coefficient. This
figure demonstrates that the present dual time-stepping
approach has a fast convergence rate, and the solution
reaches a periodic steady state within the first two
cycles. In Fig. 12, the pressure coefficient distributions
along the airfoil surface are displayed. It is clear that
the viscous results are slightly better on the lower
surface than the inviscid results, and are much better
near the trailing edge. Generally speaking, the viscous
simulation produces better Cp distribution than its
inviscid counterpart. Finally the convergence histories
are plotted for both the inviscid and viscous simulations
in Figs. 13. As expected, the BLU-SGS solver delivers
much faster convergence rate than the point implicit or
the explicit Runge-Kutta solvers.

In order to verify that the solution is grid-
dependent, a grid refinement study was carried also out.
A finer grid with about 25K cells is generated, and used
in the same simulation. Fig. 14a shows the plots of lift
coefficient vs. angle of attack computed from the
viscous simulations using two different grids. Fig. 14b
shows corresponding plots from the inviscid
simulations using two different grids with 8.2K and
16.4K cells respectively. Once again, grid
independence is demonstrated for both the inviscid and
viscous cases.

5. CONCLUSION

 A fast block LU-SGS implicit method has been
extended to solve two-dimensional compressible
unsteady flows on hybrid dynamic grids. The hybrid
grid approach has been shown to be accurate, efficient
and capable of handling complex geometries with
moving boundaries. The use of the hybrid adaptive
Cartesian/quad/triangular grids enables high resolution
of viscous boundary layers, and allows high quality
meshes to be generated throughout the computational
domain. In addition, only the triangular grids are
regenerated when remeshing occurs, making the
approach accurate and efficient. Both inviscid and
viscous calculations have been presented for the flow
over moving bodies, including a cylinder, and an
oscillating NACA0012 airfoil. The computational
results have shown good agreement with other
simulations or experimental data. The block LU-SGS

7
American Institute of Aeronautics and Astronautics

solver demonstrated much higher convergence rate than
the point implicit or explicit solvers.

ACKNOWLEDGEMENTS

 This work is partially supported by AFOSR grant
F49620-03-1-0202. The authors acknowledge the
startup funding from the Department of Mechanical
Engineering, College of Engineering of Michigan State
University (MSU). The first author would like to thank
China’s Ministry of Education and the Delia Koo Grant
in MSU for sponsoring his visit to MSU.

REFERENCES

1. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC.

Adaptive remeshing for compressible flow
computations. J. Comput. Phys. 1987; 72:449-466.

2. Lohner R. and Parikh P. Generation of three-
dimensional unstructured grids by the advancing
front method. International J. Numerical Methods
Fluids 1988; 8:1135-1149.

3. Jameson A, Baker TJ and Weatherill NP.
Calculation of inviscid transonic flow over a
complete aircraft. AIAA Paper 86-0103, 1986.

4. Venkatakrishnan V. A perspective on unstructured
grid flow solvers. AIAA Paper 95-0667, Jan. 1995.

5. Weatherill NP. Unstructured grids: procedures and
applications. Handbook of grid generation, Edited
by Thompson JF, Soni BK and Weatherill NP,
CRC Press, 1998: Chapter 26.

6. Pirzadeh S. Three-dimensional unstructured
viscous grids by the advancing-layers method,
AIAA Journal, 1996, Vol.34, No.1: 43-49.

7. Kallinderis Y, Khawaja A, and McMorris H.
Hybrid prismatic/tetrahedral grid generation for
complex geometries. AIAA Journal 1996; 34:291-
298.

8. Coirier WJ and Jorgenson PCE. A mixed volume
grid approach for the Euler and Navier-Stokes
equations. AIAA Paper 96-0762, Jan. 1996.

9. Coirier WJ and Powell KG. Solution–adaptive
Cartesian cell approach for viscous and inviscid
flows. AIAA J. 1996; 34:938–945.

10. Aftosmis MJ, Berger MJ and Melton JE. Robust
and efficient Cartesian mesh generation for
component–based geometry. AIAA Paper No. 97–
0196, 1997.

11. Karman SL. SPLITFLOW: a 3D unstructured
Cartesian/ prismatic grid CFD code for complete
geometries. AIAA–95–0343, 1995.

12. Wang ZJ. A Quadtree-based adaptive
Cartesian/Quad grid flow solver for Navier-Stokes
equations, Computers & Fluids, 1998, vol.27, no.4:
529-549.

13. Z.J. Wang, and R.F. Chen, “Anisotropic Solution-
Adaptive Viscous Cartesian Grid Method for
Turbulent Flow Simulation,” AIAA Journal, Vol.
40, pp. 1969-1978, 2002.

14. Zhang LP, Zhang HX and Gao SC, A
Cartesian/unstructured hybrid grid solver and its
applications to 2D/3D complex inviscid flow
fields, Proceedings of the 7th International
Symposium on CFD, September 1997, Beijing,
China, pp347-352.

15. Zhang LP, Yang YJ and Zhang HX, Numerical
simulations of 3D inviscid/viscous flow fields on
Cartesian/ unstructured/prismatic hybrid grids,
Proceedings of the 4th Asian CFD Conference,
September 2000, Mianyang, Sichuan, China.

16. Vassberg JC. A fast, implicit unstructured-mesh
Euler method. AIAA Paper 92-2693, 1992.

17. Venkatakrishnan V and Mavriplis DJ. Implicit
method for the computation of unsteady flows on
unstructured grids. AIAA Paper 95-1705, 1995.

18. Luo H, Baum JD and Lohner R. A fast, matrix-free
implicit method for compressible flows on
unstructured grid. Journal of Computational
Physics, 1998, vol.146: 664-690.

19. Chen RF and Wang ZJ, Fast, Block Lower-Upper
Symmetric Gauss Seidel Scheme for Arbitrary
Grids, AIAA Journal, 2000, vol. 38, no. 12: 2238-
2245.

20. Batina JT. Unsteady Euler algorithm with
unstructured dynamic mesh for complex-aircraft
aerodynamic analysis. AIAA Journal, 1991, vol.29,
no.3: 327-333.

21. Luo H, Baum JD and Lohner R. An accurate, fast,
matrix-free implicit method for computing
unsteady flows on unstructured grid. Computers &
Fluids, 2001, vol.30: 137-159.

22. Singh KP, Newman JC and Baysal O. Dynamic
unstructured method for flows past multiple objects
in relative motion. AIAA Journal, 1995, vol.33,
no.4: 641-649.

23. Singh KP, Newman JC and Baysal O. Dynamic
unstructured method for flows past multiple objects
in relative motion. AIAA Journal, 1995, vol.33,
no.4: 641-649.

24. Merry MA and Shephard MS. Automatic three-
dimensional mesh generation by the modified-
octree technique, Int. J. Num. Meth. Eng., 1984,
Vol.20: 1965-1990.

25. Parikh P, Pirzadeh S and Lohner R. A package for
3D unstructured grid generation, finite element
flow solution and flow field visualization, NACA
CR-182090, 1990.

26. Zhang LP, Guo C, Zhang HX and Gao SC. An
unstructured grid generator and its applications for
three-dimensional complex geometries. Chinese
Journal of Computational Physics, 1999, Vol.16

8
American Institute of Aeronautics and Astronautics

(5): 552-558.
27. Pirzadeh S. Structured background grids for

generation of unstructured grids by advancing front
method, AIAA Journal, 1993, Vol.3, no.2.

28. Venkatakrishnan V. Convergence to steady state
solutions of the Euler equations on unstructured
grids with limiters. Journal of Computational
Physics, 1995, vol.118, no.1: 120-130.

29. Thomas PD. And Lombard CK. Geometric

conservation law and it’s application to flow
computations on moving grids. AIAA Journal,
1979: 1030-1037.

30. Wang ZJ and Yang HQ. Unstready flow simulation
using a zonal multi-grid approach with moving
boundaries. AIAA Paper 94-0057.

31. Landon H. Compendium of unsteady aerodynamic
measurements. AGARD Report No. 702, 1983.

 Fig. 1. Hybrid grids for a store-separation problem at different times

Fig. 2. Hybrid grids for a store-separation problem at different times

t = 0.4 ms

t = 6.0 ms

9
American Institute of Aeronautics and Astronautics

Fig. 3. Computational grids and computed pressure contours at different times

Fig. 4. Surface pressure distribution Fig.5a Hybrid grid around NACA0012 airfoil

 Fig. 5. Hybrid adaptive Cartesian/quad/triangular grids around the NACA0012 airfoil

Fig. 6. Lift coefficient vs. angle of attack Fig. 7. Lift coefficient vs. angle of attack Fig. 8. Convergence histories

t = 12 ms

10
American Institute of Aeronautics and Astronautics

Fig. 9. Computed Mach number contours at different times (Up: Viscous; Down: Inviscid)

 Fig. 10. Lift coefficient vs. angle of attack Fig. 11. Computed lift coefficient histories
 for both inviscid and viscous simulations assuming inviscid and viscous flows

(a)α==4.28°↑ (b) α=6.97°↑

11
American Institute of Aeronautics and Astronautics

Fig. 12. Pressure coefficient distributions at four typical angles of attack

Fig. 13. Convergence histories in terms of number of iterations assuming inviscid and viscous flow

Fig. 14. Lift coefficient vs. angle of attack computed on two different grids for Viscous and Inviscid cases

(c) α=5.11°↓ (d) α=2.43°↓

