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ABSTRACT 

 
 A block lower-upper symmetric Gauss-Seidel (BLU-SGS) implicit dual time-stepping method is developed for 
moving body problems with hybrid dynamic grids. To simulate flows over complex configurations, a hybrid grid 
method is adopted in this paper. Body-fitted quadrilateral (quad) grids are generated first near solid bodies. An 
adaptive Cartesian mesh is then generated to cover the entire computational domain. Cartesian cells which overlap 
the quad grids are removed from the computational domain, and a gap is produced between the quad grids and the 
adaptive Cartesian grid. Finally triangular grids are used to fill this gap. With the motion of moving bodies, the 
quad grids move with the bodies, while the adaptive Cartesian grid remains stationary. Meanwhile, the triangular 
grids are deformed according to the motion of solid bodies with a ‘spring’ analogy approach. If the triangular grids 
become too skewed, or the adaptive Cartesian grid crosses into the quad grids, the triangular grids are regenerated. 
Then the flow solution is interpolated from the old to the new grid. The fully implicit equation is solved using a dual 
time-stepping solver. A Godunov-type scheme with Roe’s flux splitting is used to compute the inviscid flux. Several 
sub-iteration schemes are investigated in this study. Both supersonic and transonic unsteady cases are tested to 
demonstrate the accuracy and efficiency of the method. 
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1. INTRODUCTION 
 
 The use of unstructured grids in computational 
fluid dynamics (CFD) has become widespread during 
the last two decades due to their ability to discretize 
arbitrarily complex geometries and the flexibility in 
supporting solution-based grid adaptations to enhance 
the solution accuracy and efficiency [1-6]. In the early 
days of unstructured grid development, triangular/ 
tetrahedral grids were employed primarily in dealing 
with complex geometries. Recently, mixed or hybrid 
grids including many different cell types have gained 
popularity because of the improved efficiency and 
accuracy over pure tetrahedral grids. For example, 
hybrid prism/tetrahedral grids [7], mixed grids 
including tets/prism/pyramid/hex cells [8], and adaptive 
Cartesian grid methods [9-15] have been used in many 
applications with complex configurations. In addition, 
solution algorithms for computing steady flows on 
unstructured and hybrid grids have evolved to a high 
degree of sophistication. The state-of-the-art spatial 
discretization algorithm is probably the second-order 
Godunov-type finite volume method [12]. For time 
integration, explicit algorithms such as multi-stage 
Runge-Kutta schemes are the easiest to implement. 
Convergence acceleration techniques such as local 
time-stepping and implicit residual smoothing [3] have 
also been employed in this context. However, for large-
scale problems and especially for the solution of 

viscous turbulent flows, implicit schemes are required 
to speed up the convergence rate. In the last decade, 
significant progress has been made in the development 
of implicit numerical algorithms for steady flow 
simulations on unstructured grids [16-19]. For example, 
a block lower-upper symmetric Gauss-Seidel (BLU-
SGS) scheme [19] was shown to dramatically speed up 
the convergence of complex turbulent flow 
computations with arbitrary grids, while its memory 
requirement is comparable to a point-implicit scheme.  
 The success demonstrated by unstructured grids for 
steady flow problems has prompted their applications to 
unsteady moving boundary flow problems. For a 
moving boundary flow problem, the computational 
grids must move with the moving boundaries. The most 
straightforward approach is to deform the 
computational grid locally using a spring-analogy type 
algorithm to follow the motion of the moving 
boundaries [20]. The approach is very efficient because 
it does not require solution interpolation. A 
disadvantage of the approach is that the grid integrity 
can be destroyed by large motions or shear-type of 
boundary motions. To remedy this drawback, local 
remeshing can be applied whenever the grid becomes 
too skewed. With local remeshing, solution 
interpolations from the old to the new grid become 
necessary. The hybrid approach of combining grid 
deformation with grid local remeshing seems to be the 
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state-of-the-art in handling moving boundary problems, 
and has been used successfully for a variety of 
applications [21]. Most of the simulations for moving 
boundary problems are performed with unstructured 
triangular or tetrahedral grids only [20-23]. In this 
paper, we advocate a hybrid adaptive Cartesian/quad/ 
triangular grid approach for dynamic moving boundary 
flow problems in 2D (In 3D, the approach becomes 
adaptive Cartesian/prism/tetrahedral grid based). Body-
fitted quad grids are generated first near solid bodies to 
resolve viscous boundary layers. An adaptive Cartesian 
grid is then generated to cover the outer domain, while 
triangular grids are used to fill the gap between the 
quad and Cartesian grids. If the bodies move, the quad 
grids move with the bodies, while the Cartesian grid 
remains stationary. Meanwhile, the unstructured grids 
are deformed according to the motions of the bodies 
with a ‘spring’ analogy approach. If the triangular grids 
become too skewed because of the deformation, the 
triangular grids are then regenerated, and the solutions 
are also interpolated from the old to the new grids. The 
advantages of above hybrid grid method include: 1) 
more efficient than the fully unstructured triangular 
grids, especially for viscous flow simulations; 2) more 
accurate for viscous flow computations because of the 
high-quality grids in the boundary layer; 3) Only a 
small local region needs to be remeshed resulting in 
less data interpolation and less errors caused by data 
interpolations.  
 The solution efficiency of the time-integration 
algorithm for a moving boundary flow problem 
becomes more important than for a steady problem 
because the unsteady residual should be driven close to 
zero at each time step. For viscous flow problems with 
highly clustered computational grids, an explicit time-
marching method is clearly out of the question because 
of the time-step limit imposed by an explicit scheme. 
Therefore, only implicit schemes are considered in this 
study, while an explicit scheme may be used for 
comparison purposes. As we mentioned earlier, one has 
to drive the unsteady residual to zero (or at least to 
truncation error) at each time step when an implicit 
scheme is used to compute unsteady flows. Many of the 
successful implicit solvers for steady flows problems 
can be used to converge the unsteady residual, and there 
are successful examples in the literature [21]. The 
convergence rate of this “inner” solver determines the 
overall efficiency of the solution algorithm. In this 
study, we will extend and test the successful BLU-SGS 
scheme [19] to hybrid dynamic grids for moving 
boundary problems. Comparisons will also be made 
between explicit, point implicit and BLU-SGS inner 
iteration solvers.  
 The paper is organized as follows. In the next 
section, the hybrid adaptive Cartesian/quad/triangular 
grid generation approach will be presented, together 

with illustration examples. After that, the finite volume, 
Godunov-type second-order dual time-stepping method 
for dynamic grids is described. Details of the BLU-SGS 
inner iteration solver are presented. In Section 4, 
several unsteady moving boundary problems are 
computed. Temporal and spatial refinement studies are 
performed to ensure the computational solutions are 
time-step and grid independent. Computational results 
are compared with experimental data whenever 
possible. Finally conclusions from this study are 
summarized in Section 5. 
 

2. GRID GENERATION STRATEGY 
 
 In this study, a hybrid adaptive Cartesian/quad/ 
triangular grid approach is adopted to discretize a 
complex computational domain. Body-fitted quad grids 
are generated first near solid bodies with an advancing 
layer method [6,7] by marching in the surface normal 
direction. When the aspect ratio of the quad cell reaches 
a pre-defined scale (for example, 0.6) or the width of 
remaining gap between solid bodies is only one or two 
times of the local grid size, the local advancing layer 
procedure stops. Then an adaptive Cartesian grid is 
generated to cover the outer domain by a modified 
quadtree method [24]. This adaptive Cartesian grid is 
generated by recursively subdividing a large root cell 
covering the entire computational domain. The grid 
resolution of the adaptive Cartesian grid automatically 
matches that of the quad grids near the outer layer of 
the quad grids. Of course, Cartesian cells close and 
inside the last advancing layer of the quad grids are 
removed from the computational domain. Usually the 
gap width between the quad grid and the adaptive 
Cartesian grid is set to several times of the local grid 
size (usually 6 times or less). Then triangular grids are 
used to fill the gap using an advancing front method 
(AFM) [25-26]. To control the grid distribution 
smoothly, a structured background grid [27] is 
employed, and some controlling point or line sources 
are specified in the field according to the configuration 
of interest. Finally, a ‘spring’ analogy approach is 
employed to smooth the initial grids. 
 Due to the motion of the moving boundaries, the 
grids at time level n is different from that at time level 
n+1. The grid at time n+1 is usually generated by 
deforming the grid at time n with the grid connectivity 
or topology remaining the same. With our hybrid 
adaptive Cartesian/quad/triangular grid approach, we 
adopt the following strategy. The quad grids around 
moving bodies move (translate or rotate) with the 
moving bodies, while the adaptive Cartesian grid 
remains stationary. Meanwhile, the unstructured 
triangular grids are deformed according to the motions 
of the moving bodies with a ‘spring’ analogy approach 
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[20]. Because the quad grids are not deformed, the 
quality of the quad grids remains the same, which is 
obviously a benefit for computing the viscous boundary 
layer. In addition, the outer adaptive Cartesian grid 
always keeps the original topology. When large 
motions occur, the quad grids may cross into the 
original adaptive Cartesian grid, or the triangular grids 
become too skewed. In this case, a remeshing step is 
undertaken. The holes in the adaptive Cartesian are 
regenerated based on the outer boundary of the quad 
grids. New triangular grids are generated to fill the gap 
between the adaptive Cartesian and quad grids. The 
flow solutions are also interpolated from the old to the 
new grids at the time when the remeshing step is taken. 
Note that this remeshing step is always local, and 
occurs near the triangular grids. Therefore, this 
approach is expected to be very efficient, and accurate. 

Several examples are used here to illustrate the 
basic grid generation algorithm. The first example is a 
fighter aircraft with a store. The store separates from 
the fighter with a given trajectory. Fig. 1a shows the 
initial hybrid grid over the configuration, while Fig.1b 
displays the close-up view near the body. Note that the 
grids are very smooth in the entire computational 
domain, and the grid quality is very good even in the 
narrow gap between the fighter and the store. Fig. 1c 
and Fig. 1d show the grids when the store is far away 
from the fighter. During the separation, the body-fitted 
quad grid around the store moves with the store. Note 
that the grid quality is still satisfactory even after very 
large motions.  
 The second example is a double airfoil 
configuration, which is made up by the authors to test 
the ability of present hybrid grid generation method in 
handling narrow gaps and shear-type of grid motions. 
The main airfoil is a RAE2822 airfoil, and the small 
one is a NACA0012, which is scaled to one-third of the 
main chord. Fig. 2a shows the hybrid grid over the 
combined configuration. Figs. 2b displays the close-up 
view of the same grid, while Fig. 2c and Fig. 2d present 
the hybrid grids when the small airfoil separates away 
from the cavity. Once again, the present hybrid grid 
generator produces high-quality grids for this quite 
complex multi-body geometry. 
 

3. NUMERICAL METHOD 
 
3.1. Finite Volume Method for Dynamic Grids 
 The time-dependent Reynolds-averaged Navier-
Stokes equations for dynamic grids can be expressed in 
the integral form as 

( )( ) ( )∫∫∫ =⋅−+
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nv   (3.1) 

where S is the surface surrounding the control volume 
V, n is the out-going unit normal of S, vg is the velocity 
of S, and Q is the vector of conservative variables, Fi is 
the inviscid and Fv the viscous flux vectors. The eddy 
viscosity for turbulent flow is calculated by the standard 
κ-ε turbulence model with a wall function [13].  
 If we integrate Equation (3.1) in a polygonal 
control volume Vi, we obtain  
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(3.2) 
where the summation index f represents all the faces 
surrounding control volume Vi, and nv ⋅= ggnv . The 
inviscid flux is calculated using Roe’s approximate 
Riemann solver with reconstructed state variables at 
both sides of a face. A least square linear reconstruction 
scheme of the primitive variables is used. 
Venkatakrishnan’s limiter [28] is employed to make the 
scheme monotone. For the viscous term, a second-order 
centered scheme is used here. Other details of the flow 
solver are contained in [12-13]. 
 The conservation of a constant flow is a necessary 
condition for any viable numerical scheme. Otherwise 
mass, momentum or energy would be produced 
unphysically by the numerical simulation. If we 
examine Equation (3.2), in order to preserve a uniform 
free stream, we must have: 

∑=∂
∂

f
fgn

i dSv
t

V                           (3.3) 

 This is the so-called Geometric Conservative Law 
(GCL) [29-30] in its semi-discretized form. Assume 
that the grid velocity is computed at time level n+1/2. 
Then we can us the following time discretization to 
achieve second-order accuracy 
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 Instead of having the grid velocity vgn satisfy 
Equation (3.4), we utilize the equation to calculate vgn. 
In this case, we are absolutely sure that GCL is 
guaranteed. To this end, we employ a simple fact: the 
volume that a cell sweeps over is equal to the total of 
the volumes swept by its faces, i.e., 
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where ∆Vf represents the volume swept by face f. 
Comparing Equations (3.4) and (3.5), we arrive at the 
following equation: 
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3.2. Time Integration Algorithm 
 Once the fluxes are evaluated for each cell face 
using the preceding finite volume scheme, the semi-
discrete form of the governing equations is then 
integrated in time. For convenience, we rewrite 
Equation (3.2) as the following nonlinear system: 
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where Ri is the residual given by  
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 Then a family of implicit schemes for Equation 
(3.7) can be constructed as: 
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 If θ = 0, the scheme is the backward Euler method. 
If θ = 1/2, the resulting scheme known as the Crank-
Nicholson method is second-order accurate in time.  
 Equation (3.9) represents a nonlinear system of 
coupled equations, which has to be solved at each time 
step. It can be solved by introducing a pseudo-time 
variable τ,  
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and ‘time-marching’ the solution using local pseudo-
time ∆τ, until Q converges to Qn+1. Here Q is the 
approximation of Qn+1 and the unsteady residual Ri

*(Q) 
is defined as  
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 Obviously, Equation (3.10) can be solved by using 
a variety of numerical schemes including the explicit 
multi-stage Runge-Kutta method. Of course the best 
efficiency is expected to be achieved by an implicit 
inner iteration schemes.  

 
Implicit block LU-SGS inner iteration scheme 
 Chen and Wang developed a block LU-SGS (BLU-
SGS) method for steady flows on arbitrary grids [19], 
which showed superior convergence property for steady 
flow simulations. Here we extend this method to 
unsteady flow computations on moving grids. For 
simplicity of presentation, we choose θ = 1. 
Discretizing the pseudo-time in (3.10) with a backward 
Euler scheme, we obtain the following equation 
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where indices n, m indicates the real time and the 
pseudo-time levels. Here we let Q(0) = Qn and the 
converged solution is then Qn+1, and 
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 Equation (3.12) can be rewritten further in the 
following delta form: 
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 If we assume that the inviscid and viscous fluxes 
depend only on the state variables at the two cells 
sharing the face, the flux differences can be 
approximated with the following formula 
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and  
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where the subscripts i and j denote the current cell 
under consideration and its neighbor cell that shares 
face f, respectively. Linearizing the first terms on the 
right hand sides of Equations (3.16) and (3.17), we have 
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 Substituting Equations (3.16), (3.17), (3.18) and 
(3.19) back to Equation (3.14), we obtain: 
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and I is the identify matrix. 
 In the original LU-SGS approach, the first order 
numerical flux vectors in the left hand side of equation 
(3.20) are chosen as 
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where λij is the spectral radius of the flux Jacobean 
matrix at the cell face: 

( )
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µµλ 2v                    (3.23) 

where n is the normal of the cell face pointing from cell 
i to cell j, ri and rj are the position vectors of cell 
centers of cell i and cell j, respectively, v is the velocity 
vector, ρ is the density, a is the speed of sound, µ and µt 
are kinematic and turbulent viscosities, respectively. 
Then matrix D changes into a diagonal matrix and 
equation (3.20) degenerates into a set of scalar 
equations. 

In order to improve the convergence rate of the 
original LU-SGS, BLU-SGS keeps the diagonal block 
of the implicit system, and then use forward and 
backward sweeps to include the implicit contributions 
from the off-diagonal blocks. The sweep procedures are 
solved efficiently with an exact LU decomposition 
method. More details can be found in [19]. 
 
3.3. Boundary Conditions 
 In order to treat the boundary cells as transparent as 
possible, a ghost cell is generated for each boundary 
cell. Then the solution variables at the ghost cell are 
computed from the boundary cell according to the 
physical boundary condition. For a steady inviscid 
flow, the velocity components at the ghost cell for a 
solid wall boundary are computed as: 

nyghostnxghost vnvvvnuu 2,2 −=−=          (3.24) 
where vn is the normal velocity given by yxn vnunv += . 
Meanwhile, the density and pressure of the ghost cell 
are set to be the same as those of the boundary cell. For 
unsteady moving boundary problems, the condition 
must be adjusted since the boundary face now is 
moving. Then the normal velocity should be modified 

gnyxn vvnunv −+= . Similarly for an unsteady viscous 
surface boundary, the velocity components at the ghost 
cell are computed using the following equation, 

gnyghostgnxghost vnvvvnuu 22 +−=+−= .  (3.25) 
 In the far field, a characteristic analysis based on 
Riemann invariants is used to determine the values of 
the flow variables on the outer ghost cells. This analysis 
correctly accounts for wave propagation in the far field, 
which is important for rapid convergence to steady state 
and serves as a ‘non-reflecting’ boundary condition for 
unsteady applications. 
 

4. NUMERICAL RESULTS 
 
4.1. Moving Cylinder with Mach 4 
 This case was selected as a validation case to test 
the dynamic grid implementation. A steady state 
problem of supersonic flow around a cylinder (with 

respect to a reference frame fixed on the cylinder) was 
simulated as a moving boundary problem of a cylinder 
traveling at Mach 4 through stationary air. After the 
initial transients, the flow field around the moving 
cylinder should settle down, and should become 
“steady” with respect to the cylinder. A major feature of 
this flow problem is a bow shock ahead of the moving 
cylinder. For comparison purposes, this problem was 
also run in the steady mode. For the moving body 
simulation, a sequence of hybrid computational grids at 
different times are generated, and displayed in Fig. 3. 
These grids have around a total of 11K cells, with about 
2.3K quad cells, 3.7K triangular cells and 5.0K 
Cartesian cells. The pressure contours at the 
corresponding times are also shown in Fig. 3. Note that 
a bow shock is generated from the wall when the 
cylinder starts to move. Later the shock moves ahead of 
the moving cylinder. Finally the bow shock remains at a 
fixed location relative to the cylinder. The pressure 
distributions along the cylinder surface from both the 
steady state and moving body simulations are compared 
in Fig. 4. It is obvious that the agreement is very good, 
indicating that the implementation of the dynamic grid 
solver is successful. 

 
4.2. Inviscid Flow over an Oscillating NACA0012 
Airfoil 
 This unsteady test case has been used extensively 
in the literature for validation and demonstration studies 
because of the availability of experimental data [31]. 
The geometry is the well-known NACA0012 airfoil, 
which undergoes harmonic pitching motion about the 
quarter chord with the following time-dependent angle 
of attack tam ωαα sin∆+= , where αm is the mean 
angle of attack, and ∆α the oscillation amplitude. The 
reduced frequency, which is an important similarity 
parameter for this unsteady problem, is defined 
as ∞= Uc 2ωκ , where U∞ is the free stream velocity 
and c the chord length of the airfoil. 
 Since the flow is attached, it is assumed inviscid. 
The following flow parameters are chosen: αm = 0.016°, 
∆α = 2.51°, κ = 0.0814, and 755.0=∞M . The 
unsteady calculation was started from a steady-state 
solution at the same Mach number with the mean angle 
of attack. Several different views of the initial 
computational grid is shown in Fig. 5. The hybrid grid 
has a total of 8,373 cells, with 1,384 quad cells, 2,877 
triangular cells, and 4,122 adaptive Cartesian cells. 
Even though the flow is assumed inviscid flow, the use 
of the quad cells near the moving body ensures that the 
computational grid has high quality throughout the 
computational domain.  
 The time history of the lift coefficient vs. the time 
dependent angle of attack using 16, 32 and 64 time 
steps per cycle is displayed in Fig. 6. It is clear from 
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this figure that the computational solution is acceptable 
with only 16 time steps per cycle. The solutions are 
almost on top of each other when 32 and 64 steps are 
taken during each cycle. Also shown is a comparison 
with the experimental data of Landon [31]. Note that 
the difference between the computed and the 
experimental lift histories is quite small. In addition, the 
present computational results agree very well with 
those in [17] and [21], although they are not shown 
here. A grid refinement study was also performed to 
make sure that the computed solution is grid-
independent. In Fig. 7, the lift coefficient histories 
computed on two different grids are shown. The coarse 
grid has about 8.5K cells, while the fine grid has about 
16.8K cells. Note that the solutions on the coarse and 
fine grids are on top of each other. 
 To demonstrate the convergence property of the 
BLU-SGS inner iteration solver, we compare the 
convergence histories of BLU-SGS with those of the 
point implicit method and explicit Runge-Kutta 
method. Fig. 8 shows the convergence in terms of the 
number of inner-iterations at the first time step (starting 
from the initial steady-state solution with 16 time steps 
per cycle), which demonstrates the fast convergence 
rate by the BLU-SGS solver. 

 
4.3. Turbulent Flow over Oscillating NACA0012 
Airfoil 

The last test case we considered was a viscous 
turbulent flow problem. The geometry is the same, but 
the flow parameters are different than those in the last 
case. The new flow parameters are: αm=4.86°, 
∆α=2.44°, κ=0.0810, 6.0=∞M , Re=4.8x106. To 
capture the viscous boundary layer accurately, the quad 
grid is clustered near the airfoil surface. Since a wall 
function is employed for the κ-ε turbulence model, the 
grid resolution in the boundary layer is deemed 
adequate. For the solution of the initial steady-state 
flow field, the hybrid grid has a total of 14,999 grid 
cells, with 7,937 quad, 3,254 triangular and 3,808 
Cartesian cells. The unsteady moving body simulation 
started from the steady-state solution. Then 50 time 
steps are used for each cycle to capture the unsteady 
features. Fig. 9a displays the computed Mach number 
contours at several different angles of attack. For 
comparison purposes, an inviscid simulation was also 
carried out with the same flow conditions. The 
computed Mach contours from this inviscid simulation 
are shown in Fig. 9b for the same angles of attack. Note 
that the flow fields are quite different near the airfoil, 
especially at the trailing edge. The turbulent boundary 
layer and the wake are visible in the viscous solutions. 
The plot of the lift coefficient vs. the angle of attack is 
shown in Fig. 10. Results from both the inviscid and 
viscous simulations are plotted in the figure. It is 

obvious that the viscous simulation agrees much better 
with the experimental data [31] than the inviscid 
calculation, especially at lower angle of attack. At 
higher angle of attack, both the inviscid and viscous 
simulations miss the experimental data, with the 
inviscid simulation over-predicting and the viscous 
simulation under-predicting the lift. A possible cause of 
this discrepancy may be due to the inability of the 
turbulence model in resolving the separated region. Fig. 
11 shows the time history of the lift coefficient. This 
figure demonstrates that the present dual time-stepping 
approach has a fast convergence rate, and the solution 
reaches a periodic steady state within the first two 
cycles. In Fig. 12, the pressure coefficient distributions 
along the airfoil surface are displayed. It is clear that 
the viscous results are slightly better on the lower 
surface than the inviscid results, and are much better 
near the trailing edge. Generally speaking, the viscous 
simulation produces better Cp distribution than its 
inviscid counterpart. Finally the convergence histories 
are plotted for both the inviscid and viscous simulations 
in Figs. 13. As expected, the BLU-SGS solver delivers 
much faster convergence rate than the point implicit or 
the explicit Runge-Kutta solvers. 

In order to verify that the solution is grid-
dependent, a grid refinement study was carried also out. 
A finer grid with about 25K cells is generated, and used 
in the same simulation. Fig. 14a shows the plots of lift 
coefficient vs. angle of attack computed from the 
viscous simulations using two different grids. Fig. 14b 
shows corresponding plots from the inviscid 
simulations using two different grids with 8.2K and 
16.4K cells respectively. Once again, grid 
independence is demonstrated for both the inviscid and 
viscous cases.  

 
5. CONCLUSION 

 
 A fast block LU-SGS implicit method has been 
extended to solve two-dimensional compressible 
unsteady flows on hybrid dynamic grids. The hybrid 
grid approach has been shown to be accurate, efficient 
and capable of handling complex geometries with 
moving boundaries. The use of the hybrid adaptive 
Cartesian/quad/triangular grids enables high resolution 
of viscous boundary layers, and allows high quality 
meshes to be generated throughout the computational 
domain. In addition, only the triangular grids are 
regenerated when remeshing occurs, making the 
approach accurate and efficient. Both inviscid and 
viscous calculations have been presented for the flow 
over moving bodies, including a cylinder, and an 
oscillating NACA0012 airfoil. The computational 
results have shown good agreement with other 
simulations or experimental data. The block LU-SGS 
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solver demonstrated much higher convergence rate than 
the point implicit or explicit solvers. 
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  Fig. 1. Hybrid grids for a store-separation problem at different times 

 
 

Fig. 2. Hybrid grids for a store-separation problem at different times 
 

 

 

t = 0.4 ms

t = 6.0 ms
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Fig. 3. Computational grids and computed pressure contours at different times

 

                         
Fig. 4. Surface pressure distribution                           Fig.5a Hybrid grid around NACA0012 airfoil 
 

 
 Fig. 5. Hybrid adaptive Cartesian/quad/triangular grids around the NACA0012 airfoil 

 

   
Fig. 6. Lift coefficient vs. angle of attack  Fig. 7. Lift coefficient vs. angle of attack       Fig. 8. Convergence histories 
 

t = 12 ms
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Fig. 9. Computed Mach number contours at different times (Up: Viscous; Down: Inviscid) 
 

                   
                       Fig. 10. Lift coefficient vs. angle of attack                    Fig. 11. Computed lift coefficient histories 
                        for both inviscid and viscous simulations                            assuming inviscid and viscous flows 

                   

(a)α==4.28°↑ (b) α=6.97°↑ 
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Fig. 12. Pressure coefficient distributions at four typical angles of attack 
 

                  
 

Fig. 13. Convergence histories in terms of number of iterations assuming inviscid and viscous flow  
 

                 
 

Fig. 14. Lift coefficient vs. angle of attack computed on two different grids for Viscous and Inviscid cases 

(c) α=5.11°↓ (d) α=2.43°↓ 


