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High-Order Spectral Volume Method for the Navier-Stokes 
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 In this paper, the spectral volume (SV) method is extended to solve the Navier-Stokes 
equations by treating the viscous terms with a mixed formulation named local Discontinuous 
Galerkin approach. The SV method combines two key ideas, which are the basis of the finite 
volume and the finite element methods, i.e., the physics of wave propagation accounted for 
by the use of a Riemann solver and high-order accuracy achieved through high-order 
polynomial reconstructions within spectral volumes. The formulation of the SV method for 
the two-dimensional compressible Navier-Stokes equations is described. Accuracy studies 
are performed on the scalar advection diffusion and the Navier-Stokes equations using 
problems with analytical solutions. It is shown that the designed order of accuracy is 
achieved for all orders of polynomial reconstructions. The solver is then used to solve other 
viscous laminar flow problems to shown its potential.  

I. Introduction 
 The spectral volume (SV) method1-4 is a recently developed high-order finite volume method for hyperbolic 

conservation laws. It has been successfully demonstrated for multi-dimensional Euler equations. The SV method is a 
Godunov-type finite volume method5, which has been under development for several decades, and has become the 
state-of-the-art for the numerical solution of hyperbolic conservation laws. For a review of the literature on the 
Godunov-type method, refer to Reference 1, and the references therein. The SV method is also related to the 
discontinuous Galerkin (DG) method6, and high-order element or SV-wise polynomials are used to approximate the 
state variables. Similar to the Godunov-type method, the SV method has two key components. One is data 
reconstruction, and the other is the (approximate) Riemann solver. What distinguishes the SV method from the 
traditional high-order k-exact finite volume method7 and the weighted essentially non-oscillatory (WENO) method8-

10 is the data reconstruction. Instead of using a (large) stencil of neighboring cells to perform a high-order 
polynomial reconstruction, a simplex unstructured grid cell – called a spectral volume – is partitioned into a 
“structured” set of sub-cells called control volumes (CVs), and cell-averaged solutions on these sub-cells are then 
the degrees-of-freedom (DOFs). These DOFs are used to reconstruct a high order polynomial inside the SV. If all 
the spectral volumes are partitioned in a geometrically similar manner, a universal reconstruction formula can be 
obtained for all simplexes. With reconstructed solutions at both sides of an interface, the numerical flux can be 
computed with an approximate Riemann solver. Then the DOFs can be updated to high-order accuracy using the 
usual Godunov-type finite volume method. 

 
Comparisons between the DG and SV methods have been made recently11-12. The SV method avoids the volume 

integral required in the DG method. However, it does introduce more interfaces where more Riemann problems are 
solved. For 2D Euler equations, both methods seem to achieve similar efficiency11. Both the DG and SV methods 
are capable of achieving the optimal order of accuracy. The DG method usually has a lower error magnitude, but the 
SV method allows larger time steps. Due to its inherent property of subcell resolution, the SV method is capable of 
capturing discontinuities with a higher resolution than the DG method. 

 
Ultimately, we wish to extend the SV method to the Navier-Stokes equations to perform large eddy simulation 

and direct numerical simulation of turbulent flow for problems with complex geometries. To achieve this goal, we 
first must find a technique to properly discretize the second order viscous terms. In the second-order finite volume 
method, the solution gradients at an interface are usually computed by averaging the gradients of the neighboring 
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cells sharing the face. For higher-order elements, special care has to be taken in computing the solution gradients. 
For example, Cockburn and Shu developed the so-called local discontinuous Galerkin method (LDG) to treat the 
second order viscous terms and proved stability and convergence with error estimates13 motivated by the successful 
numerical experiments of Bassi and Rebay14. Baumann and Oden15, Oden, Babuska and Baumann16 introduced 
various penalty-type methods for the discretization of second order viscous terms. Riviere, Wheeler and Girault17 
analyzed three discontinuous Galerkin approximations for solving elliptic problems in two or three dimensions.  
More recently, Shu18 summarized three different formulations for the diffusion equation, and Zhang and Shu19 
performed a Fourier type analysis for these three formulations. 

 
Recently several formulations based on the successful LDG and penalty-type approaches have been developed 

and analyzed for the SV method using the 1D pure diffusion equation20. Three SV formulations, i.e. naïve 
formulation, local SV (LSV) and penalty SV (PSV) approaches, are tested. It was found that the naïve formulation 
converges to the wrong solution, while the LSV and the PSV approaches are consistent, stable and convergent. It 
was shown that the LSV method achieved the optimal order of accuracy, i.e., (k+1)th order for degree k polynomial 
reconstructions. The PSV approach, however, achieved only kth order accuracy if k is even. Therefore, the LSV 
approach is selected for the extension to the Navier-Stokes equations. Before we attempt to solve the full Navier-
Stokes equations, the LSV formulation is further tested on 1D (both linear and non-linear) and 2D convection-
diffusion equations.   

  
The paper is therefore organized as follows. In Section 2, we describe the spectral volume formulation for the 2D 

convection-diffusion equation. The degeneration from 2D to 1D should be obvious. After that, the extension of the 
SV method to the Navier-Stokes equations is presented in Section 3. Section 4 presents accuracy studies for both the 
convection-diffusion and Navier-Stokes equations. In addition, other computations of laminar flow are carried out, 
and results are compared with benchmark results. Finally, conclusions and some possible future work are 
summarized in section 5. 

II. Spectral Volume Formulation for 2D Convection-Diffusion Equation 
For the sake of simplicity, the following 2D convection-diffusion equation is considered first in domain Ω  with 

proper initial and boundary conditions 

,0)()( =∇•∇−•∇+
∂
∂ uu

t
u µβ

                                        (2.1) 

where β  is the convective velocity vector and µ is the diffusion coefficient. The domain Ω is discretized into N non-

overlapping triangular cells. These cells are called spectral volumes (SVs) in the SV method, i.e., i

N

i

SU
1=

=Ω . A SV 

is first partitioned into a set of structured subcells called control volumes (CVs) depending on the degree of the 
reconstruction polynomial. The partitions to be used in this paper are shown in Figure 1 for various degrees of 
reconstruction. The degrees-of-freedom (DOFs) in the SV method are the subcell-averages of the state variable. Let 
the j-th CV of Si be denoted by jiC , . Following the local DG (LDG) approach13,14,21, we define an auxiliary variable,  

 .uq ∇=
                                                       (2.2) 

Then Eq. (2.1) becomes  

 
.0)()( =•∇−•∇+

∂
∂ qu

t
u µβ

  (2.3) 

Integrating (2.2) and (2.3) in jiC ,  and performing integration by parts, we obtain 
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where jiq ,  and jiu ,  are the CV-averaged gradient and solution in Ci,j, K is the number of faces in Ci,j, and Ar 
represents the r-th face of jiC ,  and n is the unit surface normal. Since the solution u is SV-wise continuous, u and q 
at SV boundaries are not well defined, and so they are replaced with the so-called “numerical fluxes” û , u~  and q̂ , 
i.e., 
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 For the inviscid flux, one can use an approximate Riemann solver such as the Roe Riemann solver. In the scalar 
case, Roe flux degenerates to the following upwind flux 
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The other two numerical fluxes are defined by alternating the direction in the following manner  
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Figure 1.  Linear, quadratic and cubic partitions 
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Other aspects of the SV method are already described in the earlier papers1-4, and details are not given here. For 
example, given the DOFs, the reconstructed polynomial ),( yxpi  can be conveniently expressed as  

,),(),(
1

,,∑
=

=
m

j
jijii uyxLyxp

                                                                        (2.11) 

where 1),( −∈ k
j PyxL  are the "shape" functions, which are given in Reference 2.  All the surface integrals in (2.6) 

and (2.7) are performed with Gauss quadrature formulas. For time integration, we use the three-stage TVD Runge-
Kutta scheme6. 

III. Extension to the Navier-Stokes Equations 
 With the description given for the convection-diffusion equation, the extension to the Navier-Stokes is 

straightforward. We consider the two-dimensional Navier-Stokes equations written in the conservation form 

0),()( =∇•∇−•∇+
∂
∂ QQFQFt
Q

ve

rr

                                                           (3.1a) 

where the conservative variables Q  and the Cartesian components )(Qfe  and )(Qge  of the inviscid flux vector 

)(QFe

r
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.                               (3.1b) 

Here ρ is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the total 
energy. The pressure is related to the total energy by 

),(
2
1

1
22 vupE ++

−
= ρ
γ                                                                                (3.1c) 

with ratio of specific heats γ, which is taken to be 1.4 in all the simulations in this paper. The Cartesian components 
),( QQfv ∇  and ),( QQgv ∇  of the viscous flux vector ),( QQFv ∇

r
 are given by  
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where µ is the dynamic viscosity, pC  is the specific heat at constant pressure, rP  is the Prandle number, T is the 
temperature and using the Stokes hypothesis, 3/2−=λ . Again following the LDG approach, we define the 
following auxiliary variable, 

 .QG ∇=                                                          (3.2) 

Then Eq. (3.1a) becomes  

 
.0),()( =•∇−•∇+
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 (3.3) 

Integrating (3.2) and (3.3) in jiC ,  and performing integration by parts, we obtain 
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Because Q and G are discontinuous at SV boundaries, the auxiliary flux, inviscid and viscous fluxes are replaced 
by “numerical fluxes” eFQ ~,ˆ  and vF~ . The auxiliary and viscous fluxes take the following form 

 
LQQ ≈ˆ

 (3.6) 

 
).,(ˆ RL

vv GQFF
r

≈
 (3.7) 

The inviscid flux eF~  used here is the Roe flux splitting22.  

IV. Numerical Experiments 

A. Accuracy Study with 1D and 2D Convection-Diffusion Equations 
Extensive accuracy studies were carried out for both 1D and 2D convection and diffusion equations. In 1D, both 

linear and non-linear equations are employed, and problems with exact solutions are designed to test the local 
spectral volume (LSV) approach. These accuracy studies are presented next. 
1. 1D Linear Convection-Diffusion Equation 

The following linear equation is solved with SV schemes of various orders   

0=−+ xxxt uuu  

subject to the initial condition of )sin()0,( xxu =  and periodic boundary condition. The computational domain is  
[-π, π]. The numerical simulation was carried out until t =1. The 1L  and ∞L  errors are presented in Table 1. Note 
that the LSV approach is capable of achieving the optimum orders of accuracy in all cases. 
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2. 1D Viscous Burger’s Equation 
Consider 

)1,0(,1.0,0 ∈==−⋅+ xuuuu xxxt µµ
 

with the following initial condition  )
2

tanh()0,(
µ
xxu −=  and boundary condition 

.
2
1tanh),1(,0),0( 







−==

µ
tutu

 

The problem has the following exact solution 

.
2

tanh),( 







−=

µ
xtxu

 

The simulation is conducted until t = 1.0 with various SV schemes. The 1L  and ∞L  errors are presented in Table 
2. Note that the LSV approach is again capable of achieving the optimum orders of accuracy in all cases. 

Table 1. 1L  and ∞L  errors and orders of accuracy for 1D linear equation (at t = 1.0) 
Order of accuracy nTCell 

1L error 1L order ∞L error ∞L order 
10 7.60e-03 -- 9.97e-03 -- 
20 2.07e-03 1.88 2.89e-03 1.79 
40 5.46e-04 1.92 7.86e-04 1.88 

 
 

2 
80 1.40e-04 1.96 2.04e-04 1.95 
10 3.83e-04 -- 5.37e-04 -- 
20 4.55e-05 3.07 6.64e-05 3.02 
40 5.57e-06 3.03 8.16e-06 3.02 

 
 

3 
80 6.89e-07 3.02 1.01e-06 3.01 
10 1.24e-05 -- 1.85e-05 -- 
20 7.92e-07 3.97 1.17e-06 3.98 
40 5.01e-08 3.98 7.43e-08 3.98 

 
4 

80 3.15e-09 3.99 4.69e-09 3.99 

Table 2. 1L  and ∞L  errors and orders of accuracy for 1D viscous Burger’s equation (at t = 1.0) 
Order of accuracy NTCell 

1L error 1L  order ∞L error ∞L order 
10 2.12e-03 -- 1.22e-02 -- 
20 6.16e-04 1.78 4.30e-03 1.50 
40 1.73e-04 1.83 1.33e-03 1.69 

 
 

2 
80 4.76e-05 1.86 3.66e-04 1.86 
10 4.84e-04 -- 3.43e-03 -- 
20 7.62e-05 2.67 5.25e-04 2.71 
40 1.04e-05 2.87 7.06e-05 2.89 

 
 

3 
80 1.36e-06 2.93 9.12e-06 2.95 
10 3.17e-05 -- 2.16e-04 -- 
20 1.49e-06 4.41 9.53e-06 4.50 
40 7.31e-08 4.35 8.62e-07 3.47 

 
4 

80 4.22e-09 4.11 6.20e-08 3.80 
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3. 1D Fully Nonlinear Equation 
       Further, we consider the following fully nonlinear equation          

)1,0(0)(
2
1

∈=⋅−⋅+ xuuuuu xxxt
 

 with initial and boundary conditions as   xexu =)0,( ;  etutu == ),1(,1),0( . The problem has the following exact 

solution xetxu =),( . 
 

The simulation was conducted until t = 1.0 with various SV schemes. The 1L  and ∞L  errors are presented in 
Table 3. Note that the LSV approach is again capable of achieving the optimum order of accuracy in all cases. 

       
4. 2D Linear Convection and Diffusion Equation 

We also tested the LSV method on a 2D linear equation written as 

01.0.,1);1,1()1,1(),(,0)()( ==−×−∈=+−++ µµ cyxuuuucu yyxxyxt
 

with the initial condition ))(sin()0,,( yxyxu += π and periodic boundary condition. The exact solution is 

))2(sin(),,( 2 ctyxetyxu t −+= − πµπ . The recorded 1L  and ∞L  errors in Table 4 again show that the LSV approach 
is capable of achieving the optimum orders of accuracy in all cases. 

Table 3. 1L  and ∞L  errors and orders of accuracy for the fully nonlinear equation ( at t = 1.0) 
Order of accuracy nTCell 

1L error 1L  order ∞L error ∞L order 
10 9.52e-04 -- 2.1e-03 -- 
20 2.53e-04 1.91 6.12e-04 1.78 
40 6.52e-05 1.96 1.65e-04 1.89 

 
 

2 
80 1.65e-05 1.98 4.27e-05 1.95 
10 9.32e-06 -- 2.92e-05 -- 
20 1.22e-06 2.93 3.99e-06 2.87 
40 1.56e-07 2.97 5.21e-07 2.94 

 
 

3 
80 1.97e-08 2.99 6.65e-08 2.97 
10 6.30e-08 -- 2.37e-07 -- 
20 4.07e-09 3.95 1.64e-08 3.85 
40 2.59e-10 3.97 1.07e-09 3.94 

 
4 

80 1.63e-11 3.99 6.81e-11 3.97 
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B. Accuracy Study for the Navier-Stokes Equations 
To evaluate the formal order of accuracy of the local SV method for the Navier-Stokes equations, we employ the 

compressible Couette flow between two parallel walls, which has an analytical solution. The lower wall is stationary 
with temperature 0T  and the upper wall is moving at speed of U with temperature 1T . The distance between the two 
walls is H. The steady analytic solution is 

                                                           
,0, == vy

H
Uu

 

                                                           
,,tan

TR
ptconsp
⋅

== ρ
     

                                                           
).1(

2
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010 H
y
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y
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UTT

H
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TT −⋅⋅
⋅

+−⋅+=
µ

  

     The following parameters are chosen                                               

                                                .01.0,85.0,8.0,2,1 10 ===== µTTHU  

The computational domain was selected to be ]2,0[]2,0[ × . The simulation was started with the following initial 
condition:  

                                                .1,1,0,0 ==== Tpvu  

Table 4. 1L  and ∞L  errors and orders of accuracy for the 2D linear equation ( at t = 1.0) 
Order of accuracy Grid 

1L error 1L order ∞L error ∞L order 
10x10x2 3.73e-02 -- 5.35e-02 -- 
20x20x2 8.60e-03 2.12 1.28e-02 2.06 
40x40x2 2.16e-03 1.99 3.25e-03 1.98 

 
2 
 

80x80x2 5.36e-04 2.01 8.11e-04 2.00 
10x10x2 2.79e-03 -- 3.91e-03 -- 
20x20x2 3.40e-04 3.04 5.10e-04 2.94 
40x40x2 4.16e-05 3.03 6.31e-05 3.01 

 
3 
 

80x80x2 5.21e-06 3.00 7.97e-06 2.98 
10x10x2 4.14e-05 -- 5.72e-05 -- 
20x20x2 2.47e-06 4.07 3.37e-06 4.09 
40x40x2 1.47e-07 4.07 1.95e-07 4.11 

 
4 
 

80x80x2 8.45e-09 4.12 1.14e-08 4.10 



 
American Institute of Aeronautics and Astronautics 

 

9

Convergence is assumed when the residual drops by 6 orders of magnitude. Figure 2 shows a typical 
convergence history for velocity and temperature. A sequence of regular triangular meshes was used to perform a 
grid-refinement accuracy study. The 1L  and ∞L  density errors computed with 2nd, 3rd and 4th order SV schemes on 
these meshes are presented in Table 5. Note that 2nd and 4th order SV schemes can achieve the formal order of 
accuracy in the 1L  norm, while the 3rd order SV scheme showed sub-optimal order of accuracy. It is suspected that 
the partition for the quadratic SV has too large a Lebesgue constant. We plan to further optimize this SV. The ∞L  
order all showed some deterioration. We plan to carry out further investigation to understand why.  

 

C. Laminar Flow over a Flat Plate 
Next we consider the laminar flow on an adiabatic flat pate characterized by a free stream Mach number M = 0.3 

and by a Reynolds number based on the free stream condition and the plate length Re = 500. The computational 
domain is selected to be ]4,0[]5.1,5.0[ ×−  and the leading edge starts at x = 0. Three triangular meshes generated 
from structured grids were used in the simulation to demonstrate grid convergence, as shown in Figure 3. The 
coarsest mesh has 13x11x2 cells with 8 cells along the flat plate. Uniform refinement was then used to obtain the 
medium and fine meshes. We present results obtained with linear, quadratic, and cubic reconstructions and compare 

      
 

Figure 2. Convergence histories of numerical solution to the steady exact solution 

Table 5. 1L  and ∞L  density errors and orders of accuracy for the Couette flow 
Order of accuracy Grid 

1L error 1L order ∞L error ∞L order 
10x10x2 1.28e-04 --- 3.31e-04 --- 
20x20x2 3.35e-05 1.93 8.82e-05 1.91 
40x40x2 1.04e-05 1.69 2.55e-05 1.79 

 
 

2 
 80x80x2 3.79e-06 1.45 8.09e-06 1.65 

10x10x2 6.74e-07 --- 4.29e-06 --- 
20x20x2 1.30e-07 2.38 8.22e-07 2.38 
40x40x2 2.62e-08 2.31 1.94e-07 2.08 

 
 

3 

80x80x2 5.88e-09 2.16 5.32e-08 1.87 
10x10x2 2.27e-08 --- 7.09e-08 --- 
20x20x2 1.32e-09 4.10 4.17e-09 4.09 
40x40x2 7.43e-11 4.15 3.80e-10 3.46 

 
 

4 

80x80x2 5.00e-12 3.89 4.68e-11 3.02 
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the computed skin friction coefficient ( fC ) with the well-known incompressible Blasius formula along the flat plate 
in Figure 4(a-c). The computed results show a good agreement with the Blasius solution. 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

       
   (a)                                                              (b)                                                             (c) 
 
Figure 3. Three different meshes (a) coarse, (b) medium, (c) fine 

 
Figure 4b. Comparison of skin friction 
coefficients computed using quadratic 
reconstruction 

 
Figure 4a. Comparison of skin friction 
coefficients computed using linear 
reconstruction 
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V. Conclusions and Future Work 
The SV method is successfully extended to the Navier-Stokes equations by following a mixed formulation 

named the local discontinuous Galerkin approach originally developed for the DG method. The approach, which is 
named the local SV (LSV) approach, is tested extensively for 1D and 2D convection-diffusion equations using a 
serious of accuracy studies. All tests indicated that the formulation is capable of achieving the formal optimum order 
of accuracy in both the 1L  and ∞L  norms. The LSV approach is then implemented and tested for the Navier-Stokes 
equations, and was able to achieve the formal order of accuracy for the compressible Couette flow problem. The 
case of laminar flow over a flat plate was simulated successfully with good agreement with the Blasius solution.  

We plan to test the SV solver for more complex viscous flow problems, and develop an implicit version to speed 
up the convergence rate to steady state. 
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