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The use of overset grids in CFD started more than two decades ago, and has achieved 
tremendous success in handling complex geometries. In particular, overset grids have the 
advantage of avoiding grid remeshing when dealing with moving boundary flow problems. 
Traditionally overset grids were mainly used with structured grids to simplify the grid 
generation process, because a complex computational domain can be more easily meshed 
after it is partitioned into sub-domains with overset interfaces than with patched interfaces. 
More recently, unstructured grids are also used in the overset grid system to further simplify 
grid generation for each sub-domain. In this paper, two particular unstructured grids are 
advocated for moving boundary flow simulation, i.e., the use of overset adaptive 
Cartesian/prism grids. Semi-structured prism grids are generated around solid walls. These 
prism grids then overlap a single adaptive Cartesian background grid. With the adaptive 
Cartesian grid, the mesh resolution of the prism grid near the outer boundary can easily 
match that of the oversetting Cartesian grid cells. In addition, the tree-based data structure 
of the Cartesian grid can be used efficiently in hole-cutting and donor cell identification. The 
overset adaptive Cartesian/prism grid method is tested for both steady and unsteady flow 
computation. It is demonstrated that moving boundary flow computations can be automated 
with minimum user interferences. 

Nomenclature 
Aj = Area of the triangle j 
cf = Skin friction coefficient, )5.0/( 2

∞Uw ρτ  
cp              =   Static Pressure Recovery Coefficient 
Cd            =    Drag Coefficient 
x  = Streamwise distance from the center of the sphere 
D              =    Diameter of the sphere 
Fi = Inviscid flux vector 
Fv = Viscous flux vector 
Mi = Marching vector at a node i. 
θmax          =    Maximum angle between the marching vector and the face normals of its node-manifold 
m = Area weighted normal vector of a triangle 
Q = Vector of conserved variables 
r = Position vector 
rjc              =    Position vector of the centroid of triangle j 
Re = Reynolds number  
vg = Grid velocity  
vgn = Surface normal grid velocity component 
Vi = Volume of control volume i 

Introduction 
he use of unstructured grids in computational fluid dynamics (CFD) has become widespread during the last two 
decades due to their ability to discretize arbitrarily complex geometries and the flexibility in supporting solution-
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based grid adaptations to enhance the solution accuracy and efficiency.1-7 In the early days of unstructured grid 
development, triangular/tetrahedral grids were employed primarily in dealing with complex geometries. Recently, 
mixed or hybrid grids including many different cell types have gained popularity because of the improved efficiency 
and accuracy over pure tetrahedral grids. For example, hybrid prism/tetrahedral grids,8 mixed grids including 
tetrahedral/prism/pyramid/hexahedral cells,9 and adaptive Cartesian grid methods10-17 have been used in many 
applications with complex configurations. In addition, solution algorithms for computing steady flows on 
unstructured and hybrid grids have evolved to a high degree of sophistication. The state-of-the-art spatial 
discretization algorithm is probably the second-order Godunov-type finite volume method.18 For time integration, 
explicit algorithms such as multi-stage Runge-Kutta schemes are the easiest to implement. Convergence acceleration 
techniques such as local time-stepping and implicit residual smoothing1 have also been employed in this context. 
However, for large-scale problems and especially for the solution of viscous turbulent flows, implicit schemes19-25                  
are required to speed up the convergence rate. The success demonstrated by unstructured grids for steady flow 
problems has prompted their applications to unsteady moving boundary flow problems. For a moving boundary flow 
problem, the computational grids must move with the moving boundaries. The most straightforward approach is to 
deform the computational grid locally using a spring-analogy type algorithm to follow the motion of the moving 
boundaries.26 The approach is very efficient because it does not require solution interpolation. A disadvantage of the 
approach is that the grid integrity can be destroyed by large motions or shear-type of boundary motions. To remedy 
this drawback, local remeshing can be applied whenever the grid becomes too skewed. With local remeshing, 
solution interpolations from the old to the new grid become necessary. The hybrid approach of combining grid 
deformation with grid local remeshing seems to be the state-of-the-art in handling moving boundary problems, and 
has been used successfully for a variety of applications.27 ,17 
 Another powerful approach for moving boundary flow problems is the overset Chimera grid method.28 
Originally, the Chimera grid method was used to simplify domain decomposition for complex geometries using 
structured grids. The method is particularly useful for moving boundary flow simulations since grid remeshing can 
be avoided.29 However, frequent hole-cutting and donor cell searching may be necessary to facilitate 
communications between the moving Chimera grids. With continuous improvement over the last one and half 
decades, the Chimera grid method has achieved tremendous success in handling very complex moving boundary 
flow problems. More recently, in order to further simplify the grid generation process, unstructured grids are also 
used in a Chimera grid system for moving boundary flow computations, making the approach even more flexible in 
handling complex geometries.30  

 In this paper, we advocate the use of an overset adaptive Cartesian/prism grid method for moving boundary flow 
computations. The method combines the advantage of adaptive Cartesian/prism grid in geometry flexibility with that 
of Chimera approach in tackling moving boundary flow without grid remeshing. There are several reasons why an 
adaptive Cartesian grid is used for moving boundary problems: 1. Cartesian cells are more efficient in filling space 
given a certain length scale than triangular/tetrahedral cells; 2. Searching operations can be performed very 
efficiently with the Octree data structure; 3. Solution based and geometry-based grid adaptations are straightforward 
to carry out. The grid generation process is as follows. Body-fitted prism grids are generated first near solid bodies 
to resolve viscous boundary layers. An adaptive Cartesian grid is then generated to cover the outer domain and serve 
as the background grid for bridging the “gaps” between the prism grids. The prism grids are used to generate holes 
in the adaptive Cartesian grid to facilitate data communications. If the bodies move, the prism grids move with the 
bodies, while the Cartesian grid remains stationary. After a few (tens of) time steps, new holes are cut out of the 
Cartesian grids, and new donor cells are also identified. Solution fields are interpolated from the old Cartesian grid 
to the new grid using cell-wise linear reconstruction.  

The paper is organized as follows. In the next section, the overset adaptive Cartesian/prism grid generation 
approach will be presented, together with illustration examples. After that, a finite volume, Godunov-type second-
order dual time-stepping method for dynamic grids is described. In Section 4, several steady and unsteady moving 
boundary problems are computed. Grid refinement studies are performed to ensure the computational solutions are 
grid independent. Computational results are compared with experimental data and other simulations whenever 
possible. Finally conclusions from this study are summarized in Section 5. 

Generation of Overset Cartesian/Prism Mesh 

A. Prism Grid Generation 
 Since we do not address geometry modeling issues in this paper, it is assumed that water-tight surface grids are 
already generated with other packages, and serve as inputs to the present Cartesian/prism grid generator. The 
generation of prismatic grids follows the basic idea of many similar approaches, i.e., through surface extrusion in the 
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approximate surface normal direction.31-33 Even after many years of development, we are still searching for a “fool-
proof” prism grid generator, which is capable of handling arbitrarily complex surface shapes. The current algorithm 
is still not “fool-proof”, and we plan to continuously improve its robustness and efficiency. It does borrow many 
ideas already developed, and an idea to determine the optimum direction for a given surface grid node seems to be 
new, and is implemented. The steps employed to generate the prism grid are outlined next. 
1. Obtaining the Marching Vectors 
     This is the quintessential aspect of prism grid generation. Kallinderis31 defined the term node-manifold as the list 
of faces confining the node to be marched. Common sense tells us that the marching vector at any node should not 
make an angle greater than 90o with the face normals of its manifold. If the above criterion is violated, the tip of the 
marching vector is not visible from all the faces of the manifold. This results in intersections of the prism grid cells.  
So the paramount objective here is to ensure that the marching vectors satisfy the visibility criterion. The secondary 
objective is to impose orthogonality. Strict orthogonality can be achieved if the marching vectors are identical to the 
outer normal of the manifold.  In any case, the maximum of the angles between the marching vector at a node and 
the face normals of its node-manifold is obtained. This angle, θmax, needs to be as small as possible (if θmax = 0, the 
marching vector is perpendicular to its node-manifold). The optimal orientation for the marching vector can be 
obtained iteratively. An angle based weighting is used to obtain the initial guess for the marching vector. The 
marching vector is then refined locally to reduce the maximum of the angles it makes with the face normals of its 
node-manifold. An optimal orientation for the marching vectors needs to be obtained in order to fulfill the 
paramount objective i.e. ensuring visibility.  In many real life geometries, the angle based weighting scheme yields a 
marching vector which is invisible from some of the nodes in its node-manifold. Examples of the above include the 
trailing edge of an airfoil, the tip of the nose and the tail of a store and in the nacelles of aircrafts. The algorithm for 
obtaining the optimal marching vector is discussed below.  

For each marching vector Mi, a set of vectors {S} which make a small angle δ (about 1o) with Mi is obtained. 
For each of the vectors in the above set, the maximum of the angles made with the face normals of the node-
manifold in consideration is obtained. Thus a set of maximum angles is obtained. The minimum value in the above 
set is determined. If the minimum value is smaller than θmax of Mi, then the vector associated with the minimum 
value is the new marching vector Mi. This process is repeated till the marching vector remains the same. 

An inverse distance based smoothing given by Kallinderis was used to further smooth the marching vectors, i.e., 
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where α = 1- cos(θmax), node j is a neighboring node of node i, dij is the distance between node i and node j. The 
summation is from 1 to number of neighbors of i. Thus if node i is a critical node, then the orientation of Mi is 
virtually unaltered. 
2. Marching Step Based on the Curvature 

Once the marching vectors are generated, the nodes 
need to be positioned at the next layer. One of the many 
traits of a good body conforming grid is that the curvature 
of the front needs to decrease from one layer to the next 
layer. It would be unwise to maintain a constant layer 
thickness at all nodes in a particular layer. It could be 
figured intuitively that the marching vectors at concave 
nodes need to be marched faster and the marching vectors 
at the convex nodes need to be marched slower. The ratio 
of the marching steps between 2 adjacent nodes needs to 
lie between 0.5 and 2.0. The above is carried out to ensure 
smooth transition. The average thickness increases 
exponentially with increasing layers. The average 
thickness is the marching step when the front in 
consideration is a planar surface i.e. the marching vector 
at a node is the same as any of the face normals of its 

Figure 1. Two Dimensional Concave and 
Convex models
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manifold. 
A new scheme was devised to estimate the surface curvature. For better understanding, let us start with a 2 

dimensional model. Figure 1 depicts the marching vectors for a two dimensional case. AD is the un-smoothed 
marching vector in Figure 1. For the convex case, the angle between AD and AC is greater then 90o. Similarly the 
angle between AD and AB is greater then 90o. For the concave case, the angle between AD and AC is less than 90o.  
Similarly the angle between AD and AB is less than 90o. This idea can be extended to three dimensions. In the three 
dimensional case, the angles between the un-smoothed marching vector and the edges connecting the node in 
consideration are determined. If each of the above angles is greater than 90o, the surface is convex. If each of the 
above angles is lesser than 90o, the surface is concave.  In reality some saddle points occur. For such a scenario, the 
average of the angles between the un-smoothed marching vector and the edges connecting the node in consideration 
is determined. If this average is greater than 90o, the surface is treated as a convex surface else it is treated as a 
concave surface. 
3. Mean Filter Smoothing Algorithm 

This filter34 is employed to smooth the nodes in the current layer. Each iteration of this filter consists of the 
following steps 

   a.   For each triangle i, compute the area weighted averaging normal: 
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b. Normalize the averaged normals; 
c. For each mesh vertex, perform the following vertex updating procedure: 
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    However the position of the new node is updated with the new value if 
a. The new value of  θmax is less than some threshold value; 
b. The thickness of the layer obtained using the modified position is greater than a critical value. 

4. Checking for Intersections 
Most of the times, the efficiency and the accuracy of the flow 

solver depend on the grid generated. Even extremely robust solvers 
deliver erroneous results if the grid is invalid. A grid is said to be 
invalid if intersections exist. Intersections give rise to negative 
volumes and hence forcing the solver to diverge. So an important 
issue in prism grid generation is to identify intersections. As all the 
prisms need to be checked for intersections, a fast scheme was 
developed to determine intersections. Figure 2 shows a prism with 
no intersections. Triangle ABC is the triangular face at the current 
layer. Triangle DEF is the triangle at the next layer. 

Intersections occur when either of the below occurs 
1. Nodes A and D do not lie on the same side of the planes 

BCEB, BCFB, EFBE and EFCE 
2. Nodes B and E do not lie on the same side of the planes 

ACFA, ACDA, DFAD and DFCD 
3. Nodes C and  F do not lie on the same side of the planes  

ABEA, ABDA, EDAE and EDBE 

B. Generation of an adaptive Cartesian grid 
      After the prism grid generation, an adaptive Cartesian grid was 
generated automatically matching the grid resolution near the outer 

Figure 2. An example of a prism with no 
intersections
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boundaries of the prismatic grids. In order to support arbitrary local grid adaptations, the Octree data structure was 
used. The following steps were employed to generate the initial grid: 

1. Generate a single root node based on the domain size; 
2. Recursively subdivide the root node until all cells are smaller than the specified maximum cell size; 
3. Identify all Cartesian cells intersecting the outer boundaries of the prismatic grids; 
4. Recursively refine the intersected cells until all the cells intersecting the interfaces match the grid resolution 

of the prismatic cells; 
      
     The final adaptive Cartesian grid was smoothed so that the length scales between 2 neighboring cells do not 
differ by a factor more than 2 in any coordinate direction. In addition, several buffer layers with the same grid 
resolution near the outer boundaries of the prismatic grids were used to minimize the local discretization error.  

C. Automated Hole Cutting and Donor Cell Identification 
     The use of overset adaptive Cartesian and prismatic grids has the potential of handling moving boundary 
problems without any user interferences. A critical element in achieving this level of automation is an automated 
hole cutting algorithm, in which invalid Cartesian grid cells (cells inside the solid boundary) are excluded from the 
calculation, and donor cells are identified for the hole boundary cells (inner boundary Cartesian cells) and the prism 
outer boundary cells. The efficiency of the hole cutting algorithm is critical since hole-cutting is performed many 
times in a moving boundary flow simulation. To achieve the maximum efficiency, search trees were used 
extensively.  The hole cutting algorithm consists of the following steps  

1. Blank all the Cartesian cells which are inside the solid boundary; 
2. Use the Alternating Digital Tree (ADT) to find the prismatic cells, which bound the centroids of the hole 

boundary cells. These prismatic cells are the prismatic donor cells; 
3. Generate a list of outer boundary cells and use the Octree tree to identify the Cartesian Cells which bound 

the cell centroids of the last layer cells of the prism grids. These Cartesian cells are the Cartesian donor 
cells.  

      The overset Cartesian-prism grid generation algorithm was tested for several real life geometries including a 
store and a fighter aircraft.  They are shown in Figure 3. 

NUMERICAL METHOD 

A. Finite Volume Method for Dynamic Grids 
The time-dependent Reynolds-averaged Navier-Stokes equations for dynamic grids can be expressed in the 

integral form as 
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where S is the surface surrounding the control volume V, n is the out-going unit normal of S, vg is the velocity of S, 
and Q is the vector of conserved variables, Fi is the inviscid and Fv the viscous flux vectors. The eddy viscosity for 

    
Figure 3. Example overset adaptive Cartesian/prism grids 
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turbulent flow is calculated with the S-A turbulence model.35 The governing equations for inviscid flow and for 
fixed control volumes are only sub-sets of Equation (3.1). If we integrate Equation (3.1) in a polygonal control 
volume Vi, we obtain  
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where the summation index f represents all the faces surrounding control volume Vi, and nv ⋅= ggnv . The inviscid 
flux is calculated using Roe’s approximate Riemann solver36 with reconstructed state variables at both sides of a 
face. A least square linear reconstruction scheme of the primitive variables is used. For the viscous terms, an 
efficient second-order centered scheme is employed. Details of the flow solver are contained in. 14, 15 

The conservation of a constant flow is a necessary condition for any viable numerical scheme. Otherwise mass, 
momentum or energy would be produced unphysically by the numerical simulation. If we examine Equation (3.2), 
in order to preserve a uniform free stream, we must have: 
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  (3.3) 

This is the so-called Geometric Conservative Law37 in its semi-discretized form. Assume that the grid velocity is 
computed at time level n+1/2. Then we can us the following time discretization to achieve second-order accuracy 
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Instead of having the grid velocity vgn satisfy Equation (3.4), we utilize the equation to calculate vgn. In this case, 
we are sure that GCL is guaranteed. To this end, we employ a simple fact: the volume that a cell sweeps over is 
equal to the total of the volumes swept by its faces, i.e., 
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where ∆Vf represents the volume swept by face f. Comparing Equations (3.4) and (3.5), we arrive at the following 
equation: 
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B.  Time Integration Algorithm 
Once the fluxes are evaluated for each cell face using the preceding finite volume scheme, the semi-discrete 

form of the governing equations is then integrated in time. For convenience, we rewrite Equation (3.2) as the 
following nonlinear system: 
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where Ri is the residual given by  
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The easiest time integration algorithm for equation (3.7) is the explicit multi-stage Runge-Kutta method. 
However for viscous flow computational, the heavily clustered mesh imposes a too severe time step limit. We 
therefore employ the following family of implicit schemes 
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If θ = 0, the scheme is the backward Euler method. If θ = 1/2, the resulting scheme known as the Crank-Nicolson 
method is second-order accurate in time. Equation (3.9) represents a nonlinear system of coupled equations, which 
has to be solved at each time step. It can be solved by introducing a pseudo-time variableτ,38 
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and ‘time-marching’ the solution using local pseudo-time ∆τ, until Q converges to Qn+1. In (3.10), Q is the 
approximation of Qn+1 and the unsteady residual Ri

*(Q) is defined as  
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Obviously, Equation (3.11) can be solved by using a variety of numerical schemes including the explicit multi-
stage Runge-Kutta method. Note that this dual time method with an explicit inner iteration scheme should be many 
times faster than the explicit time marching method because local time-stepping in the pseudo time can be used to 
accelerate the convergence rate. Of course the best efficiency is expected to be achieved by an implicit inner 
iteration schemes. An efficient Block Lower-Upper symmetric Gauss-Seidel (BLU-SGS) approach17 is employed to 
solve the inner iteration. 

C. Boundary Conditions 
In order to treat the boundary cells as transparently as possible, a ghost cell is generated for each boundary cell. 

Then the solution variables at the ghost cell are computed from the boundary cell according to the physical boundary 
condition. For a steady inviscid flow, the velocity components at the ghost cell for a solid wall boundary are 
computed as: 

 
,22 nyghostnxghost vnvvvnuu −=−=
  (3.12) 

where nv  is the normal velocity given by 

 
.yxn vnunv +=
  (3.13) 

Meanwhile, the density and pressure of the ghost cell are set to be the same as those of the boundary cell. For 
unsteady moving boundary problems, the condition must be adjusted since the boundary face is moving. Then the 
normal velocity should be modified as 

 
.gnyxn vvnunv −+=
  (3.14) 
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Similarly for an unsteady viscous surface boundary, the velocity components at the ghost cell are computed 
using the following equation, 

 
.22 gnyghostgnxghost vnvvvnuu +−=+−=
  (3.15) 

In the far field, a characteristic analysis based on Riemann invariants is used to determine the values of the flow 
variables on the outer ghost cells. This analysis correctly accounts for wave propagations in the far field, which is 
important for rapid convergence to steady state and serves as a ‘non-reflecting’ boundary condition for unsteady 
applications. 

For a hole boundary face or an interpolation boundary face, the fluxes are required at the face center to update 
the conservative variables. In order to compute the flux at the face center, the solution at the face center is required. 
Once a donor cell for the face center is found from another grid, the solution is assumed linear over the donor cell, 
and then the solutions at the face center are computed using a first-order Taylor expansion. 

Test Results 
In this Section, the overset adaptive Cartesian/prism grid method is tested for both stationary and moving 

boundary flow problems. The following three cases are presented. 

A. Viscous Flow over a Stationary Sphere 
First, we present the computational results of flow over a sphere at various Reynolds Numbers to validate the 

overset adaptive Cartesian/prism grid solver. The flow over the sphere was simulated at Reynolds numbers of 118, 
800 and 1.1x106. In all the simulations, the incoming flow has a Mach number of 0.37. The cells are clustered near 
the solid boundary and in the wake to capture the viscous effects. Local time stepping was employed with CFL 
numbers in the range of 40-100. No slip and no penetration boundary conditions were imposed at the wall. 
Characteristic boundary conditions were imposed at the outer boundary of the computational domain. Both cp and cf 
distributions were obtained and compared with experimental data or other simulations. In order to obtain accurate cp 
and cf distributions, the non-dimensional wall distance y+ at the wall needs to be less than 1. So an iterative 
approach was followed. The solutions were obtained for a particular grid clustering near the wall. The y+ values 
were then calculated. If the maximum of the above was greater than 1, the grid was refined. This iterative process 
was carried on till the maximum y+ was less then 1. To simulate flow turbulence, a RANS Spalart-Allmaras (S-A) 
model was employed. 

A parameter of much interest to design engineers is the total drag coefficient. The total drag is composed of 
pressure drag and viscous shear drag, which can be easily computed using surface integrals. From the cf distribution, 
one can easily compute the separation angle since separation occurs at the angle where cf changes its sign.  
1. Flow at Low Reynolds Number 

The overset Cartesian/prism solver was first tested for two low Reynolds number flow cases, i.e., Re = 118 and 
800. The coarse and the fine meshes used for Re = 118 are displayed in Figure 4. At a Reynolds number of 118, the 
flow was steady and there was virtually no shedding of vortices. There was a stationary vortex ring at the rear of the 
sphere, which was also experimentally observed. 39 At Re = 800, the flow field was unsteady and there was periodic 

   
Figure 4. Coarse and Fine Grids Used for Flow over a Sphere at Re = 118 
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vortex shedding. Therefore the simulation was run in a 
time accurate mode. Time and spatial (circumferential) 
averaged cp and cf profiles for both cases were obtained 
and displayed in Figures 5 and 6 for both coarse and fine 
meshes. Note that there is excellent agreement between 
the solutions on the coarse and fine meshes, indicating 
that the numerical solution is nearly grid independent. The 
velocity vector plot on the fine grid on z = 0 for Re = 118 
is compared with an experimental flow pattern in Figure 
7. There is very good agreement on the size of the 
separation region between the experiment and 
computation. At Re = 800, a vortex pair loop was 
observed in the wake, as shown in Figure 8, which 
displays the entropy distribution on plane x = 2D. The 
vortex pair was also observed experimentally. 43 

 
  The sphere experienced a sideward force at Re = 800 

due to the formation of the vortex pair. The magnitude of 
the side force was about a fifth of the drag force. A time 
averaging of the side force yielded zero. All the properties 
like the drag, separation angle and the cp and cf 

distributions were obtained by time averaging the 
unsteady flow (but statistically steady) field. The drag 
coefficients for Re = 118 and 800 are 1.03 and 0.52, and 
the separation angles are 112.3 and 101.5 degrees 
respectively. 

The skin friction coefficient profile for Re = 800 shown 
in Figure 6 is interesting. Due to the separation of the 
boundary layer, cf changes its sign. However at around 
120 degrees, cf starts to increase. This means that the 
boundary layer tries to reattach to the sphere. Even though 
the incoming flow is laminar, the flow becomes unsteady 

Figure 8. Entropy distribution depicting the
vortex pair seen at x/D = 2 for Re = 800 

 
(a) Computation 

(b) Experiment 
Figure 7. Velocity vector plot showing the
separation region at Re = 118 
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Figure 5. Static Pressure Coefficient at Two
Different Reynolds Numbers 
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Figure 6. Skin Friction Coefficients at Two
Different Reynolds Numbers 
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after separation. The viscous effects are negligible and the 
flow is now turbulent. There is an enhanced mixing of 
momentum. This means the flow has more momentum to 
move downstream. The cf increases and peaks at around 
140 degrees. However the adverse pressure gradient starts 
to dominate over the turbulent mixing. The value of cf 
starts to decrease and becomes negative again.  In contrast, 
at a Reynolds number of 118, the viscous effects are 
dominant even after separation. Thus there is no 
reattachment of the boundary layer to the sphere at Re = 
118.  
2. Flow at High Reynolds Number 

Next turbulent flow over a sphere at Re = 1.1x106 was 
computed with the S-A turbulence model.  Again to assess 
grid sensitivity, coarse and fine meshes were used in the 
simulation. The coarse mesh has 1.5x106 cells while the 
fine mesh has 2.1x106 cells. Experimental data and other 
simulations are available at this Reynolds for comparison. 

The computed cp profiles on both the coarse and fine grids 
are compared with experimental data by Achenbach42 and 
simulation results by Constantinescu40 in Figure 9. Note 
that the agreement in cp is quite good between the present 
computation and other experimental and computational 
data. 

The computed drag coefficient Cd is 0.09 with a 
separation angle of 115o. As expected, turbulent mixing 
increases the separation angle to 115o. As separation is 
stalled, the cp curve behaves like its inviscid counterpart 
till around 90o. This can be seen from the Figure 9. A 
sharp reduction in the drag occurs at this Reynolds 
number. In this case, the viscous contribution to the drag 
force was negligible (around 10%). The separation angle 
and cp distribution were in good agreement with the 
experimental results of Achenbach and the data provided 
by Schlichting, as presented in Table 1. The drag 
coefficient obtained from the current simulations was 
slightly lower than the experimental results. The results of 

this super-critical case were compared with the DES results of Constantinescu. The Cd obtained from the current 
simulation was in good agreement with the results of Constantinescu. The cf distribution did not match other data 
well. The peak value of cf distribution and the separation angle obtained by Constantinescu was in accord with the 
current simulation. However there were some differences at angles close to zero and 180o.  This can be seen from 
Figure 10.   

 
Case Study                          Re          Cd            Θ (sep angle)   
Current Simulation              1.1e6      0.09         114.7 
Experimental                       1.1e6      0.12         118 
Constantinescu’s  results     1.1e6     0.084        114 

Table 1. Data on Drag and Separation angle; Experimental Results from Achenbach42 and Schlichting45; DES 
results from Constantinescu40 
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Taneda reported the presence of a Ω shaped vortex ending in a pair of spiral points. He performed flow 
visualization and observed that the vortex sheet separating from the sphere rolls up into a Ω shaped structure to form 
a pair of strong stream-wise vortices. The Ω vortex plot obtained from the computations is shown in the Figure 11. 
Taneda also reported that the wake was not symmetrical but tilted. The tilting of the wakes causes sideward forces 
on the sphere. These sideward forces are non zero even in the mean and were observed in our study. The wake (as 

seen from the Figure 11) has the same orientations at x/D = 0.625 and x/D = 1.5. This results in non-zero lateral 
forces. The direction of this sideward force was random. Moreover the magnitude of the sideward force was the 
same order of magnitude as the drag force. 

B.    Inviscid Flow over a Moving Sphere 
This case was selected to validate the moving grid flow solver. A sphere moves from right to left in quiescent air 

with a Mach number of 0.2. It is assumed that the flow is inviscid. If the reference frame is fixed on the moving 
sphere, the flow field should reach a steady state after the initial transients propagates out of the solution domain.  

The computational grids at two different times are shown in Figure 12. The outer boundary of the computational 
grid is located 32 times the diameter away from the initial position of the sphere. The moving grid flow solver was 
first verified that the GCL was satisfied. Then it was used to solve the moving sphere problem. The pressure 
distributions at two different times are displayed in Figure 13. Note that initially a very high/low pressure region was 
created on the left/right side of the sphere due to the sudden motion. As time goes, the flow field becomes nearly 
“steady” for an observer stationed on the sphere. In fact, the pressure field created by the moving sphere after a long 
time is compared with that created by a free stream of Mach 0.2 over a stationary sphere in Figure 14. It is observed 
that the pressure fields are very similar.  

     
Figure 12. Computational grids at two different times for the moving sphere problem 

     
Figure 11. The velocity vectors denoting the Ω vortex plots at x/D = 0.65 and 1 at a Reynolds number
of 1.1e6. 
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C.    Wing-Pylon-Store Problem 
As a final demonstration case, steady inviscid 

subsonic flow at Mach = 0.2 over a relatively complex 
geometry – wing-pylon-store was computed. This steady 
flow is simulated as a first step towards computing the 
store separation problem. The computational grid is 
shown in Figure 15. The Chimera holes generated in the 
Cartesian grid by the prism grids are shown in Figure 
16. The pressure distribution is shown in Figure 17. 
Detailed comparison with moving body experimental 
data will be carried out in the future. 

Conclusions 
In the present study, an overset adaptive 

Cartesian/prism grid method has been developed to 
simulate moving boundary flow problems. The method 

combines the advantage of adaptive Cartesian/prism grid in geometry flexibility with that of Chimera approach in 
tackling moving boundary flow without grid remeshing. Advantages of the method include: 1. Cartesian cells are 

     
Figure 13. Pressure distributions at two different times for the moving sphere problem 

(a)   (b)
Figure 14. Comparison of pressure distributions for a moving sphere in quiescent air (a) and flow around
a stationary sphere (b) 

Figure 15. Overset adaptive Cartesian/prism grid 
for the wing-pylon-store case 

Figure 16. Hole boundary generated in the adaptive 
Cartesian grid 
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more efficient in filling space given a certain length scale 
than triangular/tetrahedral cells; 2. Searching operations 
can be performed very efficiently with the Octree data 
structure; 3. Solution based and geometry-based grid 
adaptations are straightforward to carry out.  

The grid generator and overset flow solver are then 
tested for several steady and unsteady flow problems with 
stationary and moving bodies. The GCL has been satisfied 
with arbitrary grid motions. To test the accuracy of the 
overset interface algorithm, steady flows around a sphere 
at various Reynolds number were computed and compared 
with experimental data and other computations. There is 
very good agreement between the present computation 
and other data. More specifically, 
1. A stationary vortex ring was formed behind the 

sphere at the Reynolds number of 118. For the case of 
Reynolds number of 800,  a vortex pair loop was 
observed in the wake region, matching experimental observations.   

2. At a Reynolds number of 800, cf changes sign three times. This is due to initial separation of the boundary layer, 
followed by the reattachment of the boundary layer and the separation which occurs for the second time. 

3. At a Reynolds number of 1.1e6, a Ω shaped vortex ending in a pair of spiral points was observed. These 
vortices are aligned in a direction which produces lateral forces which are non-zero in the mean. Once again the 
cf increases after separation due to turbulent mixing of momentum. 

 
The grid generator and flow solver have been coupled successfully to tackle a moving boundary flow problem with 
reasonable computational results. Further validation and demonstration with a high Reynolds store-separation 
problem is planned for the future. 
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