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An efficient, high-order, conservative method named the spectral difference method has 
been developed recently for conservation laws on unstructured grids. It combines the best 
features of structured and unstructured grid methods to achieve high computational 
efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order 
local representations to achieve conservation and high accuracy; and it is based on the finite-
difference formulation for simplicity. The method is easy to implement since it does not 
involve surface or volume integrals. Universal reconstructions are obtained by distributing 
solution and flux points in a geometrically similar manner for simplex cells. In this paper, 
the method is further extended to nonlinear systems of conservation laws, the Euler 
equations. Accuracy studies are performed to numerically verify the order of accuracy. In 
order to capture both smooth feature and discontinuities, a monotonicity limiter is 
implemented, and tested for a double Mach reflection problem. The method is more efficient 
than the discontinuous Galerkin and spectral volume methods for unstructured grids. 

I. Introduction 
new, high-order, conservative, and efficient method named the spectral difference (SD) method has been 
recently developed by Liu, Vinokur and Wang1,2 for conservation laws on unstructured grids. In the present 

study, the SD method is further extended to the Euler equations. The primary motivation for developing another 
numerical method is to seek a simpler to implement and more efficient method than the current state of the art - the 
discontinuous Galerkin (DG) method3-5, and the spectral volume (SV) method6-10, to name just a few high-order 
methods for conservation laws on unstructured grids. As a matter of fact, the DG, SV and SD methods are similar in 
that they share the same the solution space, i.e., the space of piece-wise discontinuous polynomials, and some 
Riemann solvers11,12  are used at the element interfaces to provide solution coupling between the discontinuous 
elements and appropriate numerical dissipation necessary to achieve stability. In addition, all of them are 
conservative locally at the element level, making them suitable for problems with discontinuities. They do differ on 
how solution unknowns or degrees-of-freedom (DOFs) are chosen, and how the DOFs are updated. In a DG method, 
the DOFs are either the expansion coefficients for a given set of polynomial basis functions or solutions at selected 
locations within the element. In a SV method, however, the DOFs are subcell mean solutions, while in the SD 
method, the DOFs are the solutions at (usually) the Gauss quadrature points. The difference between the DG, SV 
and SD methods is the same as the difference between the Galerkin finite element (FE), finite volume (FV), and 
finite difference (FD) methods.  

In the DG method, a Galerkin finite-element method is employed to update the unknowns within each cell. This 
requires (usually) the inversion of a mass matrix, and the use of quadratures of roughly twice the order of accuracy 
of the reconstruction to evaluate the surface integrals for non-linear flux functions and additional volume integrals. 
In the SV method, the integral conservation law is used to update volume averages over subcells defined by a 
geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for a 3D simplex 
cell requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes 
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increasingly more difficult. Also, the large number of interior facets, and the additional increase in the number of 
quadrature points for each facet, increases the computational cost greatly. Because there are no volume or surface 
integrals in the SD method, it is easier to implement in multiple dimensions than the DG and SV methods. For the 
same reason, it will be shown later that the SD method is indeed much more efficient than the DG and SV methods. 

In the spectral difference (SD) method, the number of DOFs in each cell is the number of nodal values required 
to support a reconstruction of a given order of accuracy. Their locations are chosen so that a quadrature 
approximation for the volume integral exists at least to the same order of accuracy. The fluxes are calculated at a 
different set of nodes, whose number will support a reconstruction of one order higher, since the flux derivatives are 
used to update the conservative unknowns. They are located so that quadrature approximations for surface integrals 
over the cell boundaries exist to a required order of accuracy. In addition, the locations of the solution points and the 
flux points must be such that the integral conservation law is satisfied for the cell to the desired order of accuracy. If 
the points are distributed in a geometrically similar manner for all cells, the reconstruction and discretizations 
become universal, and can be expressed as the same weighted sums of the products of the local metrics and fluxes. 
These metrics are constants for the line, triangle, and tetrahedron elements, and can be computed analytically for 
curved elements. We can also show that the number of flux points is less than the number of quadrature points in the 
SV method. Since all unknowns are decoupled, no mass matrix inversion is required.  

Conventional unstructured finite-difference13 and finite-volume (FV)14-15 methods require data reconstructions 
based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different 
stencil, one must repeat the least-squares inversion for every point or cell at each time step, or store the inversion 
coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU 
time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method 
does not usually satisfy the integral conservation in general. In contrast, the DG, SV and SD methods employ a 
local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative 
unknowns. This is the main reason why high-order DG, SV and SD methods are more efficient than a high-order 
finite volume method.  

The SD formulation is similar to the pseudo-spectral or collocation spectral method16 in that both employ nodal 
solutions as the DOFs and both formulations are based on the differential form of the governing equations. In fact, 
the multi-domain spectral method developed by Kopriva17-18 and the SD method degenerate to a similar method in 
one dimension. The SD method can be viewed as an extension of the multidomain spectral method to a simplex 
unstructured grid. 

The paper is organized as follows. In the next section, the basic idea of the SD method is presented in the 
physical domain. Its efficient implementation and conservation property are discussed in Section 3. Sample 
numerical results including a numerical accuracy study are presented in Section 4. Conclusions and possible future 
work are outlined in Section 5. 

II. Basic Idea of the Spectral Difference Method 
Consider the unsteady 2D Euler equations in conservative form written as 
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where Q is the vector of conserved variables, f  and g are the inviscid fluxes given below: 
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where ρ is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the total 
energy. The pressure is related to the total energy by 
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with a constant ratio of specific heats γ = 1.4 for air. Define a flux vector with two components, i.e., F = (f, g). Eq. 
(1a) can be expressed in the following divergence form 

0=•∇+
∂
∂ Ft
Q .                                                                           (1d)  

Eq. (1) is to be solved on a 
non-overlapping simplex grid 
with proper initial and 
boundary conditions. Within 
each cell or element, we 
define two different sets of 
grid points, i.e., the solution 
points and flux points. The 
solution points are the 
locations where the nodal 
values of the conservative 
variables Q are specified 
(usually Gauss quadrature 
points). Flux points are the locations where the nodal values of fluxes F are computed. The solution unknowns or 
degrees of freedom in the SD method are the conservative variables at the solution points. Figure 1 displays possible 
placements of solution and flux points for the first to third-order SD schemes. Let the position vector of the j-th 
solution point at cell i be denoted by ij,r , and the k-th flux point at cell i be denoted by ik ,r . Denote ijQ ,  the 

solution at ij,r . Given the solutions at ij,r , an element-wise degree p polynomial can be constructed using 
Lagrange-type polynomial basis, i.e., 
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where )(, rijL  are the cardinal basis functions and pN  is the number of basis functions required to support a degree 
p polynomial reconstruction. Obviously, the locations of the solution ij,r  uniquely determine the cardinal basis 
functions )(, rijL . With the polynomial distribution given in (2), the solutions of Q at the flux points ik ,r  can be 
computed easily from 
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Since the solutions are element-wise polynomials, they are discontinuous across element boundaries. As a result, the 
fluxes at the element interfaces are not uniquely defined, for example at the corner and face points shown in Figure 
2. At the corner point, five solutions exist from all the cells (A, B, C, D and E) sharing the point. At the face point 
between cells C and D, two solutions exist. The naïve approach is to compute an averaged solution from these 
multiple solutions and then determine the flux based on the averaged solution. However it is well known that this 
naïve approach is equivalent to central differencing and is not stable. An alternative approach is to find the physical 
solution Q at the corner and face points at time t = 0+ with the discontinuous solutions as the initial condition for the 
Euler equations at t = 0. This idea is of course due to Godunov19, who pioneered the well-known Godunov-type 
finite volume methods, which become the standard method for conservation laws20. Unfortunately, this “multi-
dimensional Riemann problem” shown in Figure 2 is very difficult to solve, either analytically or numerically. 

  
    (a) 1st order               (b) 2nd order            (c) 3rd order 

Figure 1. Placement of solution (.) and flux (  ) points for a triangular element 
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Simpler approximate Riemann solvers must be found to 
determine these fluxes. We again turn to the FV method to 
look for inspirations. Obviously, in order to ensure 
conservation, the normal component of the flux vector on 
each face should be identical for the two cells sharing the 
face. Physically this means a mass flux going out of a cell 
must completely enter the neighboring cell without mass 
generation or loss. To ensure conservation, a one 
dimensional Riemann solver is employed in the face 
normal direction to compute the common normal flux. 
Consider the face flux point shown in Figure 3, and denote 
the outgoing normal from cell C to cell 1 n1. For this 
interface point, QL is computed from cell C and QR is 
computed from cell 1. Then the common normal 
component of the flux can be computed with any Riemann 
solvers such as the Rusanov11 or Roe12 flux. In the case of 
the simpler Rusanov flux, the normal component is 
computed from 
 

{ }))(()]()([
2
1),,( LRnRLRLnn QQcvQFQFQQFF −+−•+== nn ,                                    (4) 

 
where nv  is the average normal velocity and c  is the average speed of sound computed from the left and right 
solutions. Since the tangential component of the flux does not affect the conservation property, we have the 
complete freedom in determining it at the face point. In fact, it is not strictly necessary to have a unique tangential 
component physically at the face point (e.g. think of a contact discontinuity in which density is discontinuous). Let 
the unit vector in the tangential direction be l. Here we offer two possibilities. One is to use a unique tangential 
component by averaging the two tangential components from both sides of the face, i.e., 

{ }ll •+== )]()([
2
1),,( RLRLll QFQFQQFF .                                                  (5) 

The other possibility is to use its own tangential component 
from the current cell, allowing the tangential component to 
be discontinuous. Therefore, the tangential component of 
the flux on either side is not modified. For the left cell, the 
tangential and normal component are ( ),)(( nL FQF l• , and 
for the right cell, they become ),)(( nR FQF l• . 
 
For a corner flux point in cell C, two faces (from cell C) 
share the corner point, as shown in Figure 3. Let the unit 
normals of the two faces be 1n  and 2n . Once again, the 

normal components of flux 1nF  and 2nF  in 1n  and 2n  
directions are computed with a one-dimensional Riemann 
solver in the normal directions. The full flux vector can then 
be uniquely determined from the two normal flux 
components 

11 nFF =• n ,                                                                           
(6a) 

22 nFF =• n .                                                                                      (6b) 
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Figure 2. Illustration of multi-dimensional 
Riemann problems at the corner and face point  
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Figure 3. Flux computation for a corner (  ) 
and a face (  ) point using one-dimensional 
Riemann solvers.
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It is important to emphasize here that fluxes at cell corner points do not have unique values for all the cells sharing 
the corner. In spite of that, local conservation is guaranteed because neighboring cells do share a common normal 
flux at all the flux points. Once the fluxes at all the flux points are re-computed, they are used to form a degree p+1 
polynomial, i.e., 
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where )(, rikM  are the set of cardinal basis functions defined by ik ,r  and )( ,, ikik FF r= . Obviously, the divergence 
of the flux at any point within the cell can be computed using 
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To update the solutions at the solution points ij,r , we need to evaluate the divergence at these points, which can be 
easily computed according to 
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Finally the semi-discrete scheme to update the solution unknowns can be written as 
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For time integration, high-order TVD (or SSP) Runge-Kutta schemes21,22 are employed.  

III. Efficient Implementation and Conservation Property 
In the last section, we avoided the implementation and conservation issues in order to focus on presenting the 

basic idea of the SD method. The reconstruction formulas for the solution and flux presented in (2), (7) may give the 
readers the impression that each cell has a different set of reconstruction coefficients. It will be shown that for 
triangles with straight edges (most of the cells except curved wall boundary cells), the reconstruction coefficients are 
universal for all triangles. This is true because any triangle can be transformed to a standard triangle as shown in 
Figure 4 through the following linear transformation: 
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η 
(0,1)

  
Figure 4. Transformation from a physical element to the standard element 
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where i,0r , i,1r , and i,2r  are the three vertices of cell i. If the solution points ij,r  and flux points ik ,r  are distributed 
in a geometrically similar manner for all cells, they all have the same local position jξ  and kξ  with ),( ηξ=ξ . It is 
shown in Reference 2 that a universal reconstruction can be written as 

∑
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,)()( ξξ ,                                                                           (12)  

where the cardinal basis functions )(ξjL  are universal for all triangles. Therefore the solution at the flux points can 
be computed using 
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where )( kjkj Ll ξ= . Similarly the reconstruction polynomial for the flux can be written as 
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where { })(ξkM  are the universal cardinal basis functions based on the flux points. It is then straightforward to show 
that the gradient of F on the computational domain (standard element) takes the following universal form for all 
cells 
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From (15), the gradients of the flux at the solution points can be computed according to 
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. By applying the chain rule, we can easily relate the divergence of 

F in the physical domain to the gradients of the flux in the computational domain 
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For the linear transformation given in (11), it is easy to show that 
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where iV  is the volume of cell i. Let ξa  and ηa  be the inward-pointing area vectors of face 02 and face 01 in Figure 
4. Obviously, we have  
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Eq. (18) can be more concisely written as 
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Finally (10) becomes 
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Note that for all triangles (with straight faces), only the two vectors 
i

i

i

i

VV 2
,

2

ηξ aa  need to be stores. The computation 

of the flux gradients on the computational domain is universal for all triangles. Obviously this formulation is much 
simpler than that of the DG and SV methods, and is much easier to implement too. 

In order to prove conservation, we need to show that the integral form of (1) is satisfied in each cell, i.e.,  
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The volume and surface integrals are computed using quadrature formulas based on the solutions at the solution 
points and fluxes at the flux points  
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where jw  is the volume integral quadrature weights, and l
kw  are the surface integral quadrature weights for face l, 

and l
iS  is the outward area vector of face l. Using the fact that the area vectors form a closed surface, 0

3

1
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i , (25) can be further written as 
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where 31
kkk www −=ξ , and 32

kkk www −=η . Obviously, only flux points at element interfaces are used in the surface 
integral. Therefore, for all interior flux points, the weights should be zero. Substituting (22) into (24), we obtain 
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Comparing (26) and (27), the conservation conditions are 
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Since these equations depend only on the locations of the solution and quadrature points, they can be satisfied by 
properly placing the solution and flux points. In face, these conditions are satisfied for all the placements shown in 
Figure 1.   

IV. Numerical Results 

A. Accuracy Study with Vortex Evolution Problem 
This is an idealized problem for the Euler equations in 2D used by Shu23. The mean flow is {ρ, u, v, p} = {1, 1, 1, 
1}. An isotropic vortex is then added to the mean flow, i.e., with perturbations in u, v, and temperature T = p/ρ, and 
no perturbation in entropy S = p/ργ: 
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where 222 yxr += , 5−= xx , 5−= yy , and the vortex strength ε 
= 5. If the computational domain is infinitely big, the exact solution of 
the Euler equations with the above initial conditions is just the passive 
convection of the isotropic vortex with the mean velocity (1, 1). In the 
following accuracy study, the computational domain is taken to be [0, 
10]x[0, 10], with characteristic inflow and outflow boundary conditions 
imposed on the boundaries.  

The numerical simulations were carried out until t = 2 on a set of 
irregular meshes. The coarsest mesh is shown in Figure 5. The finer 
meshes are generated recursively by cutting each coarser grid cell into 

 

Figure 5. Irregular "10x10x2" Grid 
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four finer grid cells. The Rusanov flux was used in the simulations. The L1 and L∞ norms in density are presented 
for SD schemes of second and third order in Table 1. The errors presented in the tables were made time step 
independent by using sufficiently small time steps. Note that all the simulations have reached the desired order of 
accuracy in the L1 and L∞ norms. The SD method is about 25% faster than the SV method for this case. 

B. Double Mach Reflection 
This problem is also a standard test case for 

high-order methods24 and has been studied 
extensively by many researchers. The 
computational domain for this problem is chosen to 
be [0, 4] x [0, 1]. The reflecting wall lies at the 
bottom of the computational domain starting from 
x=1/6. Initially a right-moving Mach 10 shock is 
positioned at x=1/6, y=0 and makes a 60°  angle 
with the x-axis. For the bottom boundary, the exact 
post-shock condition is imposed for the region 
from x=0 to x=1/6 and a solid wall boundary 
condition is used for the rest. For the top boundary 
of the computational domain, the solution is set to 
describe the exact motion of the Mach 10 shock. 
The left boundary is set as the exact post-shock 
condition, while the right boundary is set as 
outflow boundary. Two triangular grids were 
generated with approximate mesh sizes of 1/25, 
1/50. These meshes have 5,000, 18,800 triangular 
cells respectively, corresponding to 15,000, 56,400, 
unknowns for the 2nd-order SD scheme, and 30,000, 
112,800 unknowns for the 3rd-order SD scheme. 
All the simulations were carried until t=0.2 using 
the Roe flux and TVD limiter similar to the one 
developed for the SV method9. Figure 6 shows the 
density contours computed with the second and 
third-order SD scheme on the coarse, and fine grids. 
It is obvious that the third order SD scheme has 
higher resolution than the second-order SD scheme 
for the complex flow structures near the double 
Mach stem. This case demonstrates that the SD 
method can be used for shock capturing, and 
satisfactory results have been obtained for this case.  

C. Subsonic Flow over a NACA0012 Airfoil 
As a final demonstration for a more realistic 

geometry, subsonic flow around a NACA0012 airfoil at Mach = 0.4, and angle of attack of 5 degrees is simulated. In 
this simulation, the computational results using the 3rd order SD scheme on a coarse mesh with 72x24x2 triangles 
are compared with those using a 2nd order MUSCL type FV method25 on a much finer mesh with 192x64x2 
triangles. Therefore the number of DOFs in the FV simulation is 24,576 while it is 20,736 in the SD simulation. The 
entropy production in the solution is used as the indicator for the solution accuracy. For the 3rd-order SD scheme, the 
boundary is approximated with 72 piece-wise quadratic segments. For the 2nd order FV scheme, the airfoil surface is 
approximated with 192 linear segments. The computational meshes used for both the SD and FV methods are 
displayed in Figure 7. The outer boundary is 20 chords away from the center of the airfoil. The computed Mach 
contours computed with both the SD and FV schemes are plotted in Figures 8. Note that the agreement is very good. 
The average entropy error with the 2nd order FV method is 1.04e-5, while the average entropy error with the 3rd 
order SD scheme is 4.86e-6, which is more than a factor of 2 smaller. The entropy errors along the airfoil surface are 
plotted for both computational results in Figure 9. Note that although the 2nd-order FV scheme used a much finer 
grid, the solution quality of the 3rd order SD scheme is superior.  

 
(a) 2nd order, h = 1/25 

 
(b) 2nd order, h = 1/50 

 
(c) 3rd order, h = 1/25 

 
(d) 3rd order, h = 1/50 

Figure 6. Density contours for the double Mach reflection 
problem 
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V. Conclusions 
In this paper, the spectral 

difference method has been 
successfully extended to Euler 
equations on unstructured grids. 
The method combines the best 
features of structured and 
unstructured grid methods in 
which the structured distribution of 
discrete variables in each 
unstructured cell maintains 
computational efficiency and 
geometric flexibility. It utilizes the 
concept of discontinuous and high-
order local representations to 
achieve conservation and high 
accuracy. Universal 
reconstructions are obtained 
by distributing unknown and 
flux points in a geometrically 
similar manner for all 
unstructured cells. The flux 
derivatives needed to update 
the conservative unknowns are 
expressed as universal 
weighted sums of the fluxes, 
leading to great computational 
efficiency. An important 
aspect of the method is that the 
number of Riemann solvers 
per unknown decreases as the order of accuracy increases, 
reducing the cost for higher order. Placements of the 
unknown and flux points with various orders of accuracy 
are given for triangular elements. Accuracy studies of the 
method are carried out with the vortex propagation 
problem and the order of accuracy is numerically verified. 
A monotonicity solution limiter has been implemented for 
discontinuity capturing, successfully employed to simulate 
a double Mach reflection problem. The method is also 
applied to high-order boundary representations, and 
satisfactory results have been obtained for a subsonic flow 
around the NACA0012 airfoil. The 3rd-order SD was 
shown to produce more accurate results than a 2nd-order 
FV method on a much coarser grid with fewer solution 
unknowns. Future research areas in the SD method include 
extension to even higher order of accuracy, and to Navier-
Stokes equations and three dimensions.  
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 Table I.  Accuracy on the vortex propagation case (t = 2) (irregular grids), Rusanov flux 

Order of Accuracy Grid errorL1  orderL1  errorL∞  orderL∞  
10x10x2 6.82e-3 - 1.11e-1 - 
20x20x2 1.72e-3 1.99 3.66e-2 1.62 
40x40x2 4.75e-4 1.86 8.99e-3 2.03 
80x80x2 1.22e-4 1.96 2.22e-3 2.02 

 
 

2 
 

160x160x2 3.07e-5 1.99 6.32e-4 1.81 
10x10x2 1.94e-3 - 5.43e-2 - 
20x20x2 3.55e-4 2.45 7.50e-3 2.86 
40x40x2 5.97e-5 2.57 1.32e-3 2.51 
80x80x2 9.79e-6 2.61 1.94e-4 2.77 

 
 

3 
 

160x160x2 1.52e-6 2.69 3.22e-5 2.59 
 


