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A new implicit high-order space-time spectral difference method for capturing 
discontinuities is developed.  The proposed method has the following new improvements 
over the conventional spectral difference method: (1) The method treats time and space in 
the same fashion and hence allows conservation laws to be satisfied in the coupled space and 
time coordinates. (2) The method is fully implicit and can be any order of accuracy and 
therefore it allows a much larger time step to be taken without losing accuracy. (3) The 
method can be implemented to obtain the solution by using adaptive polynomial 
refinements.  An approach employing a self-adaptive polynomial refinement will be 
discussed. (4) A new approach for discontinuity-capturing will be discussed. This approach 
does not require a limiter and unlike the conventional shock capturing schemes, the 
proposed method resolves discontinuities by polynomial refinements. 

I. Introduction 
n efficient high-order, conservative method named the spectral difference (SD) method has been recently 
developed by Liu, Vinokur and Wang1,2 for conservation laws on unstructured grids. The SD method can be 

viewed to be the extension of the multi-domain spectral (MDS) method3,4 to unstructured grids. In the present study, 
the SD or the MDS method is further extended to uniformly treat the space and time coordinates. The primary 
motivation for developing another numerical method is to seek a simpler to implement and more efficient method 
than the current state of the art - the discontinuous Galerkin (DG) method5-7, and the spectral volume (SV) method8-

12, to name just a few high-order methods for conservation laws on unstructured grids. 

A 

 In order to improve the accuracy of numerical methods, mesh size refinement (h-refinement) is probably the 
most common way. This is generally done by refining the mesh using a fixed-order (usually low-order) piecewise 
polynomial interpolation over the mesh.  On the other hand, polynomial refinement (p-refinement) is known to 
achieve a faster rate of convergence to an accurate solution with a fixed mesh size13-15. The high order schemes 
generally give rise to numerical instability and spurious numerical oscillations, which may result from either 
interpolation errors caused by constructing a polynomials of high degree on a uniform set of nodes (Runge 
phenomena16) or the interpolation errors caused by using a continuously differentiable function to approximate a 
jump discontinuity (Gibbs phenomena13).  
 There are two types of polynomial refinements: the finite difference methods17 keep the number of unknowns the 
same but extend the stencil size to neighboring cells in order to construct high order polynomials and the finite 
element methods14-15 enable high order construction of the polynomial within a cell by increasing the number of 
unknowns in the cell or element.  When performing high-order interpolations, we should be careful to avoid the 
occurrence of Runge phenomenon.   If the positions of the unknowns within a cell in the finite element refinement 
can be predefined to satisfy the properties of orthogonal polynomials and quadratures, the Runge phenomenon can 
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be avoided. To illustrate this, Table 1 lists a comparison of the two methods in approximating the 
function [ ]( ) 1/ 2 cos(5 )f x x= + , for 0 x π≤ ≤ : one with uniform mesh and the other with Gauss-Lobbato mesh.  As 
can be seen from the table, a polynomial based on the Gauss-Lobbato mesh is capable of generating an oscillation 
free solution for a polynomial up to the order of more than 500 (where the error has dropped below machine zero) 
while the polynomials generated using a uniform mesh give rise to the Runge phenomenon when the order of 
polynomials is increased. It is for this reason that we shall use the finite element polynomial refinement as the basis 
of the polynomial refinement in the rest of the paper. 

 
k (number of 
unknowns) 

Uniform 
Mesh 

Gauss-Lobbato 
Mesh 

2 9.32E-02 9.32E-02 
4 9.57E-02 5.10E-02 
8 5.32E-02 1.69E-02 
16 7.63E+00 1.31E-03 
32 2.89E+05 3.93E-06 
64 6.73E+16 7.45E-11 
128 5.09E+39 2.74E-20 
256 5.01E+85 3.03E-39 
512 9.29E+228 1.94E-65 

Table 1.  The comparison of the polynomial refinement of [ ]( ) 1/ 2 cos(5 )f x x= + , where 0 x π≤ ≤ , using 
uniform and Gauss-Lobbato’s meshes.  The order of the polynomial is k-1 and the resultant polynomial is 
used to extract the values of f’s at the Legendre points.  The L2 normal is calculated by integrating the 
difference of the values obtained by the polynomial and the exact functional values: 

( )22 calculated exact
o

L u u dx
π

/ ,π= −∫ using the Legendre integration scheme. 

 
A recent development in the CFD community is to make use of adaptive mesh refinement in regions where large 

gradients of dependent variables are encountered. However, this method not only requires a complicated grid 
generation strategy to refine the mesh, but the approach sometimes requires a very fine mesh and small time step in 
regions of high gradients to enable a feasible solution to be obtained. Similarly, one can anticipate an adaptive finite 
element polynomial refinement under a fixed mesh to provide an accurate solution with a minimum number of 
unknowns.  The adaptive polynomial not only is efficient in generating an accurate solution with relatively few 
unknowns, but also does not require the regeneration of the base mesh during the refinement process.  Hence, in this 
paper an approach for the adaptive polynomial refinement will be developed. 

One major issue in the development of adaptive polynomial refinement is the occurrence of spurious solutions in 
regions of large gradients or discontinuity, or the Gibbs phenomena.  Traditionally, limiters, such as TVD, TVB and 
FCT, are applied to restrict the maximums and minimums to be bounded.  While the limiter approach has proven to 
be very effective in reducing the Gibbs phenomena, it comes with a heavy price – the method reduces to a low order 
scheme in regions of discontinuity and it applies indistinguishably to a physical oscillation as well as a spurious 
solution.  As a result, for an adaptive polynomial refinement to be successful, the concept of limiters must be 
abandoned.   The paper discusses a new adaptive method that will allow an accurate solution to be obtained with 
successive polynomial refinements even in regions of discontinuity.   

Finally, it should be noted that the current method is formulated in an implicit manner – both in space and time.  
In other words, the treatment for the time terms is formulated in exactly the same manner as that for the space terms. 
The treatment enables a fully coupled conservative solution in space and time simultaneously.   

II. Basic formulation 
For simplicity, the following derivation is performed in one dimension.  Since the polynomial interpolation can 

be expanded in each direction independently, the extension of the method to multi-dimension is straightforward. 
Consider the solution of the 1-D conservation law as follows: 

 ( ) 0u F u
t x

∂ ∂
+ =

∂ ∂
  (1a)  
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on domain with the following initial condition: Ω

 ( ,0) ( )ou x u x=   (1b)  

and appropriate boundary conditions on ∂Ω  in (1). In (1), x is the space coordinate and x , t denotes time and ∈Ω
[ ]0,t T∈ , u is a state variable, and F is flux in the x direction. Domain Ω  is discretized into n non-overlapping cells 

called spectral element, which are divided by the dashed lines as shown in Figure 1.  Here, we depict the value of 
with two subscripts, , where i indicates the nodal point index in the time direction,  and u ,i ju 1,2, , 1, ;i = − j  

denotes the nodal point index in the space direction, 1, 2, , 1, .j k k= −  If the polynomial of approximation is of the 
order k-1 (or , the degree of freedom of the polynomial is k (or  and hence we need to provide k 
(or independent data to determine the polynomial uniquely.  One can choose k distinct points in space (including 
two end points), as shown in Figure 1.  The points are denoted as the nodal points, located at 

1)− )
)

jx ,   The 
cardinal function for the algebraic interpolation is: 

1, , .j k=

 
1, 1,

( ) ( ) ( )
k k

j m j
m m j m m j

mM x x x x
= ≠ = ≠

= − −∏ ∏ x  (2a) 

 

t 
x 

fu u=

( ) ( )1 1
2 2f fF F F A u u= + − − ( ) ( )1 1

2 2f fF F F A u u= + − −

1, jQ − , 1i kP −

 
Figure 1. The implicit spectral difference methods. 

 
where ( )j m jM x mδ= .  For given values of fluxes at a fixed time level, i , ,1 ,2 ,, , ,i i i kF F F  at 1 2, , , kx x x , the 
polynomial at the fixed time level, i , becomes: 

  (2b) , 1 ,
1

( ) ( )
k

i k j i j
j

P x M x F−
=

= ∑

To avoid the Runge phenomenon, we select Gauss-Lobbato points as the nodal points.   
The evaluations of ,i jF for  is straightforward since the values of interior u ’s are uniquely 

defined.  At the faces of two adjacent cell elements in which
2, , 1,j k= − ,i j

1j = and k, F contains two values, one from the 
left, LF , and the other from the right, RF .  At the interfaces, we must replace the flux F by a Riemann flux. We 
suggest using the Roe’s approximate Riemann solver18 to uniquely define the interfacial fluxes, 
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 ( )1 1 (
2 2f R L f R )LF F F A u u= + − −  (3) 

where ( / )f fA F u= ∂ ∂  is the Jacobian matrix at the interface, f.  Once we establish the (k-1)th-order polynomial to 
describe the distribution of F in terms of x for a given time, , the flux gradient at the nodal point p and the given 

, 
it

it ,( / )i pF x∂ ∂ , where , can be approximated by 1, ,p = k

 

, 1
,

1, ,

1, 1, ,
,

1

1,

( )
.

( )

k
ji k

i j
ji p i p p

kk

p mk q q j m m j m q
i jk

j
j m

m m j

MPF F
x x x

x x
F

x x

−

=

= ≠ = ≠ ≠

=

= ≠

⎧ ⎫∂∂ ⎛ ⎞⎛ ⎞∂⎛ ⎞ ⎪ ⎪= = ⎨⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎬

⎪ ⎪⎩ ⎭
⎧ ⎡ ⎤

−⎪ ⎢ ⎥
⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪−
⎪ ⎪
⎩ ⎭

∑

∑ ∏
∑

∏

⎫
⎪  (4) 

 The time gradient term of equation (1a) can be viewed as a time derivative of a flux, u, with a Jacobian of unity.  
Similar to the treatment in space, for a given time step, T∆ , one can construct a ( 1)− th-order polynomial by 
subdividing the time step into  nodal points, located at , it 1, ,i = , shown in Figure 1.  The cardinal function for 
the algebraic interpolation is: 

 
1, 1,

( ) ( ) ( )i m
m m i m m i

N t t t t t
= ≠ = ≠

= − −∏ ∏ i m  (5a) 

where ( )i m imN t δ= .  For given values of u at a fixed space level,   at , the polynomial at 
the fixed space level,  j,  becomes: 

,i 1, 2, ,, , ,j ju u u j 1 2, , ,t t t

 1, ,
1

( ) ( )j i i
i

Q t N t u−
=

= ∑ j

−

 (5b) 

Again we choose to use Gauss-Lobbato points as the nodal points in time to avoid Runge phenomena.   
The values of  for  are uniquely defined in the interior points.  At the faces of two adjacent 

time-step elements, u contains two values, one from the  nodal point of the previous time step and the other from 
the 1

,i ju 2, , 1i =

st nodal point of the current time step. Since the time flux is treated as a flux with a positive eigenvalue (of 
unity), u at the time interface is taken from the  nodal point of the previous time step, as shown in Figure 1.  
Similar to the treatment of the space term, the time gradient term in term of  at a given position pt jx , ,( / ) p ju t∂ ∂ ,   
where , can be approximated by 1, ,p =

 

1,
,

1,

1, 1, ,
,

1

1,

( )
.

( )

j i
i j

ip j pp

p m
q q i m m i m q

i j
i

i m
m m i

Q Nu u
t t t

t t
u

t t

−

=

= ≠ = ≠ ≠

=

= ≠

⎧ ⎫∂⎛ ⎞ ∂∂ ⎛ ⎞⎛ ⎞ ⎪ ⎪= =⎜ ⎟ ⎨⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎪⎩ ⎭
⎧ ⎡ ⎤

−⎪ ⎢ ⎥
⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪−
⎪ ⎪
⎩ ⎭

∑

∑ ∏
∑

∏

⎬
⎪

⎫
⎪  (6) 

It should be noted that proposed method treats the time derivative in an exactly the same manner as space 
derivatives.  This enables a strong coupling of the state variables in both space and time domains.  
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III. Implicit Time Integration 
In the implicit treatment, the governing equation is solved by a successive iterative method by reformulating 
equation (1a) in a -form: ∆

 
* *( )u A u u F u

t x t x
∂∆ ∂ ∆ ∂ ∂

+ = − −
∂ ∂ ∂ ∂

 (7) 

where is the intermediate value during iteration, *u u∆ is the correction to be made to during iterations and the 
RHS is evaluated explicitly using equations (4) and (6).  It should be noted that the RHS is the real physics and the 
LHS provides a numerical operator serving to drive the RHS to zero.  Hence, we use the first order method for the 
LHS: 

*u

 

( ) ( )

1
, ,

, 1 1

, , ,
, , , ,

,

1 1

1 1
2 2

n n
i P i P

i P i i i i

n n n n
i P i W i E i P

i P i P i P i P
i P P W E P

u u u
t t t t t

u u u uA u A A A A
x x x

−

− −

∂∆⎛ ⎞ ≈ ∆ − ∆⎜ ⎟∂ − −⎝ ⎠

∆ − ∆ ∆ − ∆∂ ∆⎛ ⎞ ≈ + + −⎜ ⎟∂ −⎝ ⎠
,

x x−

 (8) 

 
where E, P and W are the three adjacent nodal points in space; and i 1i − are the two adjacent time levels; and n and 
n-1 are the two adjacent pseudo-time levels.  Equation (7) can thus be written in the following algebraic form: 

  (9a) 1
, , , , , , , , ,

n n n n
i P i P i E i E i W i W i T i P i Pa u a u a u a u RHS−∆ = ∆ + ∆ + ∆ + *

where 

 

( )

( )

, , ,

, , ,

,
1

, ,
,  and 

* *
*
,

, ,

1 1
2

1 1
2

1

( )

i E i P i P
E P

i W i P i P
P W

i T
i i

i P i nb
nb E W T

i P
i P i P

a A A
x x

a A A
x x

a
t t

a a

u F uRHS
t x

−

=

= − −
−

= +
−

=
−

=

⎛ ⎞ ⎡ ⎤∂ ∂
= − −⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦

∑

 (9b) 

Equations (9a) and (9b) ensure that the coefficients are positive and also diagonally dominant and hence they are 
unconditional stable to solve iteratively.  The solution of u∆ is used to update the value of  and iterations are 
performed until the RHS approaches to the machine zero. 

*u

To demonstrate the usefulness of the current implicit method, the method is applied to solve the following scalar 
equation: 

 0u u
t x

∂ ∂
+ =

∂ ∂
 (10) 

with a sine wave initial condition 

 ( ,0) sin( )u x xπ=  (11) 
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where 1 1x− ≤ ≤  and a periodic boundary condition is applied on both ends of the domain.  The calculations were 
performed with  and , implying the 100.01t∆ = 11= th order Gauss-Lobbato polynomial was placed along the time 
direction.  A series of calculations were performed to vary the number of element cells, n, and the number of Gauss-
Lobbato points within each element cell, k.  The total time for the solution to advance is  and hence at the end 
of the calculation, the u–profile completes a full cycle and returns to its initial location.  The L2 error norm is 
defined by  

2T =

  /2 (12) ( ) ( )
1

22
, ,

11

2 / 2
k

c e i c i e i
i

L u u dx w u u
=−

= − ≈ −∑∫

where and  are the calculated and exact values, respectively. The integration was performed by the Gauss-
Lobatto integration scheme with predefined weights for integration,  

cu eu
.iw

k * n

L
2

102 10310-9

10-7

10-5

10-3

10-1

101

n

k

 

Figure 2.The prediction of a moving sine wave for the cell element number of n = 5, 10, 20, 40, 80, 160 and 
320; and the Gauss-Lobbato points per element of k = 2, 3, 4, 5, 6, 7 and 8. 

Figure 2 shows the L2 norm errors for a range of n (number of cell elements) and k (Gauss-Lobbato points per 
cell element) combinations.  The vertical lines connect the predicted errors as k is varied for a given, fixed n.  The 
horizontal lines connect the errors as n is varied and k is fixed.   The n values tested are n = 5, 10, 20, 40, 80, 160 
and 320 and the k value are k = 2, 3, 4, 5, 6, 7 and 8. The horizontal axis is the total number of nodal points used in 
the calculations,  Figure 2 demonstrates that the current implicit method can cover a range of n and k 
combinations and it also shows that the polynomial refinement is a  much more effective way to achieve an accurate 
solution than the mesh refinement.   

.n k×

The implementation of the polynomial refinement does not require regenerating new cell elements and it is a 
much more effective way to achieve an accurate solution.  This combination makes the polynomial refinement a 
better candidate for solution adaptive refinement than mesh refinement.    

IV. Adaptive Polynomial Refinement 
To perform an adaptive polynomial refinement, one has to a start with a known initial profile of  u, which can be 

the solution at the previous time step or can be a solution obtained by a fixed set of n and k (generally low order) if 
steady state cases are involved.   The initial values of u can be used to obtain the 2nd derivative, which is used as an 
indicator for solution refinements. For a 1-D case, as discussed in section 2, the second derivative of u at ,px  where 

can be obtained by: 1, , ,p = k
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1, 1, ,
,

1,

1,

2
1, 1, ,

2
1 ,,

1,

( )
,  for r 1, , ,

( )

( )

( )

kk

r mk q q j m m j m q
i jk

ji r
j m

m m j

kk

p ik q q j m m j m q

k
j i ji p

j i
m m j

x x
u u k
x x x

x x
u u

xx x x

= ≠ = ≠ ≠

=

= ≠

= ≠ = ≠ ≠

=

= ≠

⎧ ⎫⎡ ⎤
−⎪ ⎪⎢ ⎥

∂⎛ ⎞ ⎪ ⎪⎣ ⎦= =⎨ ⎬⎜ ⎟∂⎝ ⎠ ⎪ ⎪−
⎪ ⎪
⎩ ⎭
⎧ ⎫⎡ ⎤

−⎪ ⎪⎢ ⎥
⎛ ⎞∂ ∂⎛ ⎞⎪ ⎪⎣ ⎦= ⎨ ⎬⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠⎝ ⎠ ⎪ ⎪−

⎪ ⎪
⎩ ⎭

∑ ∏
∑

∏

∑ ∏

∏
.∑

 (13) 

Based on the given profile, the order of polynomial in each element can be successively refined until the order of 
polynomial, k, in the respective element satisfies the following relationship: 

 

 21 k

k

D
D

ε+− <  (14a) 

where  

 
2 2

2 2
10

x k

k
j j

u uD dx
x x

∆

=

∂ ∂
= ≈

∂ ∂∑∫ jw , (14b) 

the value of ε  is chosen 0.001 and x∆ is the size of the cell element.  It should be noted that the increment of k is 2 
in equation (14a) rather than 1 in order to allow a monotonic variation of D during the search. Once the values of k 
in each element are defined from the given profile, we can advance the solution to the next time step, t .  With 
the new solution at t being obtained, a search for a new set of k’s is repeated until the new solution equation 
satisfies equation (14).  A correction of k is then made in each cell element to select the larger number of the two k’s 
(one at  and the other at t ) and the solution at the t

T= ∆
T= ∆

0t = T= ∆ T= ∆ is recalculated.   This process is iterated for a 
maximum of 5 times. The values of k’s in each element and the solution at t T= ∆ are then defined. 

In figure 3, equation (10) is solved using the adaptive polynomial technique described above for three variants of 
initial conditions: (1) sine wave: sin( )xπ , (2) inverse cosine wave: [ ]1/ 2 cos(5 )xπ+  and (3) composite wave: 
sin(5 ) sin(4 )x xπ π+ .  There are 20 cell elements,  the time step is fixed at 0.01, and the Gauss Lobbato points in the 
time direction are fixed at   Figures 3(a) and 3 (b) are the sine-wave solutions at and  respectively; 
figures 3(c) and 3(b) are the inverse-cosine-wave solutions at 

8.= 1t = 2,t =
1t = and 2,t =  respectively; figures 3(e) and 3(f) are 

the composite wave solutions at and 1t = 2,t =  respectively.  In these figures, the nodal points within the same cell 
element are depicted by the same colors; the solid line is the exact solution and the yellow bars indicate the final 
number of Gauss-Lobbato points in each element, k.  As can be seen from the figures, the adaptive scheme seems to 
follow the shape gradients very well leading to the L2 error norm of the solutions after one revolution to be less than 

 710 .−
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Figure 3. Adaptive polynomial refinement for (a) and (b) being a sine wave: sin( )xπ ; (c) and (d) being a 

inverse cosine wave: [ ]1/ 2 cos(5 ) ;xπ+  and (e) and (f) being a composite wave: sin(5 ) sin(4 )x xπ π+ . Figures 
(a), (c) and (e) are for (b),(d) and (f) are for 1;t = 2.t =   Solid lines are exact solutions; colored circles (points 
within the same cell element are depicted with the same color) are calculations; and yellow bars are the 
number of nodal points in each cell elements. 

V.   Discontinuity Capturing 
The Gibbs Phenomenon occurs when high-order schemes are used to approximate a discontinuity.  There are a 

number of approaches to eliminate Gibbs Phenomena in the presence of discontinuity.  Most approaches rely on a 
judgment that the local solution must be bounded by the maximum or minimum in its neighboring vicinity.   For 
example, if any nodal point within a cell element has a local extreme, one may choose to align the value of all nodal 
points within the element into a straight line staggered between the values of two boundary points, W and P, see 
figure 4.   
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P 
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Figure 4.  The limiter approach for fixing the Gibbs phenomena. 

 
The limiter treatment has two drawbacks.  First, it can not distinguish whether a local maximum (or minimum) is 

caused by Gibbs phenomena or is a part of the real physics.  As a result, a clipping of the peak values can occur even 
in the simulations of a smooth wave. Second, the linear approximation within the element reduces the overall order 
of accuracy to the 2nd order and this makes the polynomial refinement difficult to achieve. 

To abandon the use of the limiter treatment, we must first view the above mentioned linear-alignment limiter to 
be equivalent to the solution of the convection-diffusion equation with a conductivity K approaching infinity: 

 
2

2

( ) .u F u uK
t x x

∂ ∂ ∂
+ =

∂ ∂ ∂
 (15) 

Because equation (15) with large K leads to a solution with a linear profile of u bounded by two imposed cell 
boundary values, the linear alignment limiter can be achieved implicitly.   To demonstrate that the solution of (15)  
with a infinitely large value of K within the element is independent of the order of the scheme used and that the 
solution is exactly identical to that of equation (1a) solved by using the 1st order polynomial ( e have 
repeated the sine wave problem with  two different approaches – one with 8 Gauss-Lobbato points (  and the 
other with the 1

2),k =  w
8)k =

st order polynomial (  within all cell elements.  For the high order scheme, the artificial 
diffusive treatment is used in the interior points of all cell elements, while no diffusion is applied to the cell face 
points (the P and W points) in order to ensure that the conservation law of the elements is satisfied. Figure 5 shows 
the comparison of the two approaches after one complete cycle (

2)k =

2)t =  and it can be seen that the two approaches 
give exactly identical solution.  Obviously, the solution is not accurate because when K approaches infinity the 
truncation errors reduce to the 2nd order, irrespective of the number of Gauss-Lobbato points being used in the 
elements. 

Now that we view the limiter treatment as a subset of convection-diffusion equation, we can increase the order of 
accuracy by reducing the value of the conductivity used in the simulation.  If we define: 

 
 maxmax

K c xλ= ∆  (16) 

where  
max

λ  is the maximum of the absolute values of eigenvalues within the element (for a scalar problem, the 

eigenvalue is the convective velocity, V ); maxx∆ is the maximum value of the distances between the two adjacent 
nodal points within the cell element; c is the reciprocal of the Peclet number: Pe / .V x K= ∆  Since a Peclet number 
being less than 2 is a sufficient condition for a central differencing scheme to satisfy TVD properties19 (it guarantees 
the coefficients of the discretized equations being positive),  we have chosen c 0.5=  (or Pe = 2) in the current 
paper.  Although the high order schemes cannot be proven to satisfy TVD properties when  the numerical 
experiments presented in this paper did not show any spurious oscillation. 

2,Pe =
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Figure 5.  Compare the solutions of moving sine wave obtained by the 1st  order polynomial ( 2k )=  and 

the 7th order polynomial  with a dominant diffusion inside the cell elements,  The solutions are 
obtained with  and 11 Gauss-Lobbato points in the time direction. The results are presented for the 
solutions with one complete cycle  It can be seen that the 7

( 8k = )

.

.K →∞
0.01t∆ =

( 2)t = th order polynomial with (applied to 
only the interior points) gives rise to exactly the same solution as that obtained by the 1

K →∞
st  order polynomial 

without diffusion. 
 
It should be noted that the diffusive treatment is used only in the interior points (excluding P and W points) and 

the conductivity, K, within the element must have the same value so that in the extreme cases when diffusion is 
dominant, a linear profile of u can be recovered.   By reducing the value of K, we can now allow the solution to have 
maximum and minimum inside the cell element. 

Figure 6 shows the solutions obtained after one complete cycle ( 2t = ) of a scalar equation, (10), with the 
following initial condition:  

 
( ) ( )

( ) ( )21/ 1 1.8 1 0.85 , x 0
( , 0) { 21/ 1 1.8 1 0.85 , x<0

x x
u x

x x

− − − + ≥
=

+ − + +

⎡ ⎤
⎢⎣
⎡
⎢ ⎥⎣ ⎦

⎥⎦
⎤

 (17) 

The time step used is and the Gauss-Lobbato points employed in the time direction is  0.001t∆ = 5.=

While figure 6(a) shows that the extent of Gibbs phenomena has propagated to the downstream of the 
discontinuity ( ) after one cycle rotation, the parabolic shape before the discontinuity is well preserved.  
Figure 6(b) shows that the linear-alignment limiter, although is capable of eliminating Gibbs phenomena, leads to 
too much numerical dissipation near discontinuity and also results in a clipping of the parabolic profile shape before 
the discontinuity.  Figure 6(c) is the results obtained by using 

0.8x ≈

0.5c =  in equation (16) but the diffusion is still added 
to cell elements having local extreme.  As can be seen from the figure, although the reduction of K can give a 
sharper resolution of the discontinuity, the physical parabolic shape before the discontinuity is still clipped. To 
eliminate the unnecessary peak clipping, we have chosen to use the change of first order gradients as a criterion to 
add the diffusion term, shown in Figure 6(d): 
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Figure 6.  The solution of equation (10) in the presence of discontinuity: with initial condition (17). (a) no 

limiter: Gibbs phenomena is propagated to the downstream of the discontinuity; (b) the limiter is applied to 
the cells having local extreme and K ; (c) the limiter is applied to the cells with local extreme and 

; (d) the limiter is applied to the cells with the ratio of 1
→∞

0.5c = st order gradient of the two nodal points larger 
than 20, equation (18), and   The solid line is the exact solution; symbols are the results of the 
calculations (points depicted with the same color share the same polynomial); and bars are the number of 
Gauss-Lobbato points used in a cell element (bars with grey color are elements with diffusion being 
activated). 

0.5.c =

 max , min , min ,
e w e w e w

u u u u u u
x x x x x x

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 20
⎤

− >⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣⎩ ⎭
⎥
⎦

 (18a) 

where 

 1 1

1 1

and .j j j j

e j j w j j

u u u uu u
x x x x x x

+ −

+ −

− −∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ − ∂ −⎝ ⎠ ⎝ ⎠
  (18b) 

If any of two adjacent nodal interfaces within a cell element, e and w, satisfies equation (18a), the diffusion is added 
to all the interior nodal points in the corresponding cell element.   Hence, equation (18) enables the diffusion to be 
applied only when there is a rapid change of the profile within the element, monitored by the change of the first 
order gradients.  Since the local extreme is no longer used as a criterion to apply the diffusion, the clipping of the 
parabolic shape before the discontinuity is reduced. Unfortunately, although the result is improved, the general 
profile shape is still somewhat blurry.  
 The above mentioned treatments can eliminate Gibbs phenomena, but they can not reproduce the exact solution 
even though the polynomial adaptation is in active, as can be seen from Figure 6.  Therefore, we have to resort to a 
different approach.   This approach requires a predefined maximum number of Gauss-Lobbato points allowed within 
each cell element, .  The polynomial refinement technique as illustrated in section 4 is performed for each cell maxk
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element and the number of Gauss-Lobbato points selected is defined as k .  The approach will activate the diffusion 
term in equation (15) when k reaches the value of .  In the presence of a discontinuity, k will approach to infinity 
implying that no polynomial can fit a discontinuity. The activation of the diffusion will smear the discontinuity to a 
smoother but still sharp profile that can be captured by the polynomial refinement. Once the profile is smeared to a 
shape that can be captured by the high order polynomial (hence 

maxk

max ),k k< the diffusion is no longer needed.   As a 
result, the larger value of  is used, the shaper resolution of the discontinuity will be resolved. maxk

The advantages of the new approach can be realized as follows.  First, if k reaches the value of , it implies 
that the polynomial with the maximum order allowed is still not able to resolve the profile shape. Since this 
inadequacy of the polynomial approximation may be the source of the numerical errors, the application of the 
numerical diffusion in this region may be the least damaging one, in contrast to adding the diffusion in regions 
where the profile shape is adequately captured by the polynomial, such as cell elements with local extremes. Second, 
the value of the diffusivity, K, is proportional to the space distance, 

maxk

x∆ , as shown in equation (16) and hence if a  
larger value of  is picked (maxk maxx∆ is smaller), a smaller dose of artificial diffusion is necessary.  A large value of 

 not only reduces the amount of artificial diffusion to be added, but also increase the order of polynomial to 
approximate the sharp profile shape.  Hence, the resolution of the profile across the discontinuity can be refined with 
increasing value of . 

maxk

maxk
Figure 7 shows the solution of equations (10) with initial condition (17) using this new approach.  The value of 
 is fixed at 160 and .  Again, the time step used is maxk 0.5c = 0.001t∆ = and the Gauss-Lobbato points employed in 

the time direction is   As can be seen from the result the solution is excellent and no Gibbs phenomenon is 
observed in the solution.  Figure 8 provides the comparison of the solutions using 

5.=

maxk = 20, 40, 80 and 160; under 
the condition   Figure 8 shows that as the maximum order of polynomial, is increased, 0.5.c = max ,k
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Figure 7. The adaptive polynomial refinement in the presence of discontinuity, with and max 160k = 0.5.c =   

The solid lines are exact values and the symbols are the solutions.  The colors of the symbols represents that 
the Gauss-Lobbato points within the same cell element.  The yellow bars depict the number of Gauss-Lobbato 
point, k, used in each element.  The grey bars are the cell elements where diffusion is activated as a result of 

   max .k k=
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the sharper profile shape is observed.  The reduction of errors as  increases has demonstrated that with 
polynomial refinement it is possible to achieve an accurate solution in the presence of discontinuities.   

maxk

 
It should be noted that in the simulation of equation (10) with initial condition (17), the diffusion is first added to 

the cell elements containing the discontinuity in the few initial steps, and after the discontinuity is smeared to a 
sharp profile that can be captured by the high order polynomial (the larger is, the sharper the profile becomes), 
the diffusion is then occasionally added in the region downstream of the discontinuity to prevent the instability 
caused by the sharp gradient from magnifying. This mechanism is very different from the limiter treatments 
mentioned above. 

maxk
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Figure 8.  Adaptive polynomial refinement in the presence of discontinuity after one complete cycle– 

effects of . maxk
 
Figure 9 shows the comparison of calculation using c = 0.5, 0.25 and 0.1 under the conditions that maxk =  80 and 

20. As can be seen that a slight reduction of c can increase the sharpness of the resolution without encountering 
Gibbs oscillations and this becomes most effective when a small value of  is used. maxk

In figures 10 and 11, two further initial profiles were selected to validate the current method for capturing 
discontinuities.  Figure 10 uses a step function: 

 0, x 0.3
( ,0) ;

1,  <0.3{f x
x
≥

=  (19) 

and figure 11 employs a triangular function: 

 

3 (1- x ), x 0.3
7( ,0) .71 x , x<0.3

3

{f x
≥

=
−

 (20) 

The calculation were performed with 20 cell elements,  max 80k =  and 0.5c = . The time step is  with 
Gauss-Lobbato point in time,   Both calculations show excellent agreements with the exact solutions 
indicating that the current adaptive-polynomial-refinement approach is capable of capturing discontinuities. 

0.001t∆ =
5.=
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Figure 9.  Adaptive polynomial refinement in the presence of discontinuity after one complete cycle – 

effects of c.  
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Figure 10.  The prediction of the transport of a step function, equation (19).  The solid lines are exact 

solutions, symbols are calculations (nodal points having the same colors are within the same cell element), and 
bars indicates the number of Gauss-Lobbato points used in each cell elements (grey color depicts the cell 
element  with  diffusion being activated as a results of maxk k= ). 
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Figure 11.  The prediction of  the transport of a trangular function, equation ( 20).  The solid lines are 

exact solutions, symbols are calculations (nodal points having the same colors are within the same cell 
element), and bars indicates the number of Gauss-Lobbato points used in each cell elements (grey color 
depicts the cell element  with  diffusion being activated as a results of maxk k= ). 

VI.  The solution of Burger’s equation 
The current adaptive polynomial refinement scheme is tested in a non-linear problem: 

 0u uu
t x

∂ ∂
+ =

∂ ∂
 (21a) 

with the following initial condition: 

 ( ,0) 1 0.5sin( ).f x xπ= +  (21b) 

The calculation domain covers 1 1x− ≤ ≤  and the periodic boundary conditions are used at the two boundaries. 
Twenty cell elements are used with =80 and cmaxk = 0.5 in the calculation.   The time step used is 0.001t∆ =  

and 5 Gauss-Lobbato points are placed in the time direction. Figure 12 shows the solution obtained by the proposed 
adaptive polynomial refinement.  The results are free from oscillation and the comparison with the exact solution is 
excellent.   This shows that the current proposed method is also adequate to solve non-linear problems. 

VII.  Concluding Remarks 
We have proposed a new implicit adaptive polynomial refinement to solve equations governing conservation 

laws.  The scheme is implicit in both space and time and accurate solutions can be obtained by successive 
polynomial refinements, even across a discontinuity.  The method has been tested to solve a scalar transport 
equation with a number of complicated initial profiles with excellent agreements.  The method has also been applied 
to solve a Burger equation with impressively sharp resolution of the shock wave. Following the success we observed 
in this study, we plan to extend the method to multiple dimensions in the future. 
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Figure 12.  The prediction of the Burger’s equation, (21).  The solid lines are exact solutions, symbols are 

calculations (nodal points having the same colors are within the same cell element), and bars indicates the 
number of Gauss-Lobbato points used in each cell elements (grey color depicts the cell element  with  
diffusion being activated as a results of maxk k= ). 
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