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A high order multidomain spectral difference (SD) method is developed for the three 
dimensional Navier-Stokes equations on unstructured hexahedral grids. The method is easy 
to implement since it involves one-dimensional operations only, and does not involve surface 
or volume integrals. Universal reconstructions are obtained by distributing solution and flux 
points in a geometrically similar manner in a unit cube. The concepts of the Riemann solver 
and high-order local representations are applied to achieve conservation and high order 
accuracy. In this paper, accuracy studies are performed to numerically verify the order of 
accuracy using flow problems with analytical solutions. High order of accuracy and spectral 
convergence are obtained for the propagation of an isotropic vortex and the Couette flow. 
The capability of the method for more complex, inviscid and viscous flow problems with 
curved boundaries is also demonstrated.  

I. Introduction 
t is well known that the computation of the aerodynamic flow field around a helicopter is a considerable challenge1 
because of the following difficulties: the strong interaction between the moving blades, vortices and wakes; the 

disparate length scales in the flow turbulence under flight conditions; the complex and moving geometries. Although 
low order (first and second order) finite volume methods have become the main choice of many commercial 
Computational Fluid Dynamics (CFD) codes, and proven successful in tackling a wide variety of flow problems2-4 in 
engineering design, vortex-dominated flows require high-order methods. This is mainly because lower order 
methods usually dissipate propagating vortices too quickly. For example, to study the classical blade-vortex 
interaction problem, it is estimated that the blade vortex should be well preserved for several revolutions. However, 
low order methods may completely “consume” the vortex after one or two revolutions, therefore making the 
computation results very inaccurate. 
 Many high-order methods (order > 2) have been developed in CFD for a wide range of applications, such as 
large eddy simulation, computational aeroacoustics, etc. Most high-order methods were developed for structured 
grids, e.g., ENO/WENO methods5, compact methods6-7, optimized methods8. In particular, high-order compact 
methods have been successfully employed to tackle vortex dominated problems, including vortex breakdown over a 
delta wing9. For complex configurations, it may be too time-consuming to generate smooth structured grids required 
by these high-order methods. Our focus in this study is therefore on high-order methods for unstructured grids. 
 There have been intensive research efforts on high-order methods for flow simulation on unstructured grids in 
the last two decades. An incomplete list of notable examples includes the spectral element method10, multi-domain 
spectral method11-12, k-exact finite volume method13, WENO methods14, discontinuous Galerkin method15-17, high-
order residual distribution methods18, spectral volume19-22 and spectral difference methods23-26. Among those 
methods, some are based on the weighted residual form of the governing equations, for instance the discontinuous 
Galerkin (DG) 15-17 method. Some are based on the integral form of the governing equations, e.g., the k-exact finite 
volume method13 and the spectral volume (SV) 19-22 methods. Others, such as staggered grid multi-domain spectral 
method11-12 and spectral difference (SD) method23-26, are based on the differential form. 
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 When selecting a method to implement for three-dimensional problems, the cost or complexity of the method is 
often an important factor. It is obvious that methods based on the differential form are the easiest to implement since 
they do not involve surface or volume integrals. This is particularly true when high-order curved boundaries need to 
be dealt with. Based on our experiences with the DG, SV and SD methods on 2D triangular meshes, the SD method 
is the most efficient for the 2D Euler equations. Therefore the SD method is selected to solve the 3D Navier-Stokes 
equations on unstructured hexahedral grids. The use of hexahedral grids is again a compromise between flexibility 
and efficiency. Although tetrahedral grids are easier to generate for complex 3D configurations, hexahedral grids 
have been shown to possess higher efficiency and accuracy for viscous boundary layers.  
 The SD method23-26 and the staggered-grid multi-domain spectral method11-12 on hexahedral grids actually 
converge to the same method. The solution unknowns or degrees-of-freedom (DOFs) are the conserved variables at 
the Gauss points, while fluxes are evaluated at Lobatto points to generate the flux derivatives to update the DOFs. 
On a hexahedral element, all the operations can be performed in a one-dimensional manner, resulting in higher 
efficiency and less implementation cost. As in the Godunov-type finite volume method, Riemann solvers are used at 
element interfaces to couple the discontinuous elements together, and provide the necessary numerical dissipation 
which makes the method conservative and stable. 
 The paper is organized as follows. In the next section, the formulation of the 3D spectral difference method is 
described for a hexahedral element. Numerical results including accuracy studies are presented in Section 3, together 
with results for several often used demonstration cases. Conclusions and possible future work are outlined in Section 
4. 

II. Formulation of the 3D Spectral Difference Method on Hexahedral Grids 

A. Governing equation 
 Consider the unsteady compressible 3D Navier-Stokes equations in conservative form written as 
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where Q is the vector of conserved variables, and F, G, H  are the total fluxes including both the inviscid and 

viscous flux vectors, i.e., vi FFF −= , vi GGG −= , vi HHH −= . Expressed in vector forms, 
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and
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In (1a-1c), ρ is the density, u, v and w are the velocity components in x , y and z directions, p is the pressure, and E 
is the total energy, μ  is dynamic viscosity, pC  is the specific heat at constant pressure, rP  is the Prandle number,  
and T is the temperature. For a perfect gas, the pressure is related to the total energy by 
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−
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γ

,                      (1d) 

with a constant ratio of specific heats γ = 1.4 for air. The stress tensor in (1c) takes the following form 

 )3/)((2 zyxxxx wvuu ++−= μτ         (1e.1)  

 )3/)((2 zyxyyy wvuv ++−= μτ         (1e.2) 

  )3/)((2 zyxzzz wvuw ++−= μτ          (1e.3)  

 )( yxyxxy uv +== μττ                             (1e.4)  

 )( zyzyyz vw +== μττ                             (1e.5) 

  )( xzxzzx wu +== μττ .                            (1e.6) 

B. Coordinate transformation 
 It is assumed that the computational domain is 
divided into non-overlapping unstructured 
hexahedral cells or elements. The use of hexahedral 
cells for viscous boundary layers is preferred over 
tetrahedral cells because of their efficiency and 
accuracy. In order to handle curved boundaries, 
both linear and quadratic isoparametric elements 
are employed, with linear elements used in the 
interior domain and quadratic elements used near 
high-order curved boundaries. In order to achieve 
an efficient implementation, all physical elements 

),,( zyx are transformed into a standard cubic 
element ∈),,( ςηξ [0,1]x[0,1]x[0,1] as shown in 
Figure 1. The transformation can be written as 
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where K is the number of points used to define the physical element, ),,( iii zyx  are the Cartesian coordinates of 
those points, and ),,( ςηξiM  are the shape functions. For the transformation given in (2), the Jacobian matrix J  
takes the following form 
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For a non-singular transformation, its inverse transformation must also exist, and the Jocobian matrices are related to 
each other according to 

 
Figure 1 Transformation from a physical element to a 
standard element 
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Therefore the metrics can be computed according to 
 

Jzyzyx /)( ηζζηξ −= , Jzxzxy /)( ζηηζξ −= , Jyxyxz /)( ηζζηξ −= , 

Jzyzyx /)( ζξξζη −= , Jzxzxy /)( ξζζξη −= , Jyxyxz /)( ζξξζη −= , 

Jzyzyx /)( ξηηξζ −= , Jzxzxy /)( ηξξηζ −= , Jyxyxz /)( ξηηξζ −= . 
 

The governing equations in the physical domain are then transformed into the computational domain (standard 
element), and the transformed equations take the following form 
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C. Space discretization  
 In the standard element, two sets of points are defined, namely 
the solution points and the flux points, illustrated in Figure 2 for 
2D. The solution unknowns or degrees-of-freedom (DOFs) are 
the conserved variables at the solution points, while fluxes are 
computed at the flux points in order to update the solution 
unknowns. In order to construct a degree (N-1) polynomial in any 
direction, solutions at N points are required. The solution points 
in 1D are chosen to be the Gauss quadrature points defined by 
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The flux points are the Gauss-Lobatto points given by  
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 For the DOFs at the solution points, we employ degree N-1 
Lagrange interpolation polynomials in each coordinate direction 
defined as  

 
Figure 2 Distribution of solution points 
(circles) and flux points (squares) in a 
standard element for a third-order SD 
scheme 
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Similarly, for the fluxes at the flux points, we use degree N Lagrange interpolation polynomials in each coordinate 
direction given by 
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The reconstructed solution for the conserved variables in the standard element is just the tensor products of the three 
one-dimensional polynomials, i.e.,  
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Similarly, the reconstructed fluxes in each direction take the following form: 
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The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For the inviscid 
flux, a Riemann solver, such as the Rusanov27 or Roe flux28, is employed to compute a common flux at interfaces to 
ensure conservation and stability. For the viscous flux, the approach in Reference 12 is employed. The viscous flux 
is a function of both the conserved variables and their gradients, i.e., 
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gradient of the conserved variables in the physical domain can be easily computed using 
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Here the derivatives along each coordinate line    
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Once all fluxes are computed at the flux points, the flux polynomials are built according (8), and the derivatives of 
the fluxes are then evaluated at each solution point to update the DOFs, i.e., 
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For time integration, we employ a multistage SSP or TVD Runge-Kutta scheme16. In summary, the algorithm to 
compute the inviscid flux derivatives employs the following steps: 

1. Given the conserved variables at the solution points { }kjiQ ,,
~ , compute the conserved variables at the flux 

points },,{ 2/1,,,2/1,,,2/1 +++ kjikjikji QQQ  using (7) (Note that mnnm Xh δ=)( ); 
2. Compute the inviscid fluxes at the interior flux points using the solutions computed at Step 1, i.e., 

{ }1,,1,~
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kji L ; 

3. Compute the inviscid flux at element interfaces using a Riemann solver, such as the Rusanov solver. In 
terms of the left and right conserved variables and fluxes (as shown in Figure 3), the normal direction of the 
interface n

r
, and the averaged normal velocity component nV  and sound speed c , the interface fluxes for 

the Rusanov solver are given by 
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4. Compute the derivatives of the fluxes at all the solution points according to 
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To compute the viscous flux derivatives at the flux points, we follow  the algorithm given in Reference 12: 
1. Same as Step 1 for the inviscid flux computations; 
2. Compute the average solutions at cell interface flux points using the solutions at both sides of the interface 

)(
2
1

RL QQQ += ; 

3. Compute the gradients of the solutions at the flux points using the computed solutions at the flux points. 
One can compute the gradients at the solution points first using Eqs. (9) and (10)  with the same set of 
derivative coefficients given in Eq, (12) and then interpolate these gradients to the flux points with the 
same set of coefficients used in Step 1, or one can compute the gradients at the flux points directly by 
evaluating the derivative coefficients at those points; 



 
American Institute of Aeronautics and Astronautics 

 

7

4. Compute the average gradients at cell interface flux points using the gradients from both sides of the 
interface 

)(
2
1

RL QQQ ∇+∇=∇ ; 

 
5. Compute the viscous fluxes at all flux points using the solutions computed at Step 2 and the gradients 

computed at Step 5. 

III. Numerical Results 

A. Accuracy study using the vortex propagating problem 
 In order to quantify the numerical order of accuracy of the SD method for the Euler equations with both mesh-
refinement (h-refinement) and order refinement (p-refinement), the vortex propagation problem is chosen since it 
has an analytical solution. This is an idealized problem for the Euler equations, which was used by Shu5. 
 The mean flow is }1,0,1,1,1{},,,,{ =pwvuρ . An isotropic vortex is then added to the mean flow, i.e., with 
perturbations in u , v , and temperature ρ/pT = , and no 

perturbation in velocity w and entropy γρ/pS = : 

),0,,(
2

),,( )21(5.0 xyewvu r −= −

π
εδδδ  

                  ,
8

)1( 21
2

2
reT −−

−=
γπ

εγ
δ  

                 ,0=Sδ  

where 222 yxr +=  , and the vortex strength 5=ε , In the 
numerical simulation, the computational domain is taken to 
be [-5,5]x[-5,5]x[-5,5], with characteristic inflow and 
outflow boundary conditions imposed on the boundaries in 
x and y directions, and extrapolation in the z direction. It 
can be readily verified that the Euler equations with the 
above initial conditions admit an exact solution that moves 
with the speed (1,1,0) in the diagonal direction on the  x-y 
plane. 

 
Figure 3 The connectivity of an element with its two horizontal neighbors showing points where the 
solutions (red circles) and horizontal fluxes (solid blue squares) are located. 

 
Figure 4 Time-independent errors for the vortex 

propagation problem with h-refinement 
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 For the h-refinement study, the order of accuracy (np) was set to 6. Four meshes were employed. Figure 4 
shows the time-independent errors between the numerical solution and the analytical solution in ∞L , 1L  and 2L  
norms at t=0.1. The three-stage Runge-Kutta scheme was employed for the time integration. Note that the average 
slope is about 6, indicating that the numerical order of accuracy is 6th –order. 

 
 For the p-refinement study, a coarse grid with 100 (10x10x1) elements was used. Then the order of the 
polynomial basis was increased. The numerical errors are displayed at t=0.1 in Figure 5. Note that the exponential 
decay of error with respect to the order of accuracy is achieved.  
  Lastly, the time integration accuracy was also studied on a fine mesh (25 elements, np = 25). The numerical 
errors with different time-step sizes are displayed at t=0.1 in Figure 6. Note that the order of accuracy of the time 
integration scheme is 3rd –order.  

B. Accuracy study using the Couette flow 
The Couette flow is an analytical solution of the Navier-Stokes equations, and was selected to study the accuracy 

for the 3D Navier-Stokes solver. This problem models the viscous flow between a stationary, fixed temperature ( 0T ) 
front plate, and a moving, fixed temperature ( 1T ) rear plate at speed of U. The distance between the two plates is H. 
It has an exact solution under the simplification 
that the viscosity coefficient μ  is a constant.  

The steady analytic solution is  
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where k is the thermal conductivity, and R is the 
gas constant. 

 
In our simulations, we chose 01.0,85.0,8.0,0.2,0.1 10 ===== μTTHU . The computational domain of  

[0,4]x[0,2]x[0,4] is displayed as Figure 7. 

 
Figure 6 Temporal error of the vortex problem on 
a fine mesh 

 
Figure 5 Convergence of density error for the 
vortex propagation problem with p-refinement 

 
Figure 7 Computational domain and boundary conditions 
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 We conducted a p-refinement study on a coarse grid with 16 
(4x4x1) elements. The order of the polynomial basis was 
increased up to 9, and the 3-stage Runge-Kutta scheme was 
employed for the time integration. The exponential decay of 
numerical errors in ∞L , 1L , and 2L norms was again observed as 
shown in Figure 8. 

C. Flow over a cylinder 
 To test the capability of SD method for handling curved 
boundaries, the flow over a cylinder was selected as a validation 
case. The simulations were performed for both inviscid and 
viscous flows. Two computational grids were generated and are 
shown in Figure 9. The coarse grid has 160 elements and the fine 
grid has 590 elements. 
 The coarse grid was employed in the 
inviscid flow simulation using the 4th 
order SD scheme with both linear and 
quadratic boundary representations. . It 
was found that the quadratic boundaries 
were critical for inviscid flows. This is 
fully demonstrated in Figure 10, which 
displays the x velocity contours with the 
linear and quadratic boundaries.  There is 
a large entropy increase in the flow with 
the linear boundary representation, and the 
flow is not symmetric at all. On the other 
hand, the flow with the quadratic 
boundary produced a symmetric flow 
pattern, as shown in the right plot of 
Figure 10.  
 The low Reynolds number viscous 
flow problems were solved on the fine 
grid again using the 4th order SD scheme. 
Numerical results show that periodic 
vortex shedding was predicted very well, 
as depicted in Figure 11, which displays 
the instantaneous x velocity contours with 
a Reynolds number of 150. Several 
different Reynolds numbers were then 
selected in the simulations using the 
coarse grid. The pressure history plots 
with Reynolds numbers 60 and 120 near  

 
Figure 8 Convergence of the density error for 

the Couette flow problem 

 
Figure 9 coarse and fine grids for a cylinder 

   
Figure 10. u contours: linear wall (left), quadratic wall (right) 

 
Figure 12 Pressure history (Re=60)  

Figure 11 u-velocity contours at z-cutting plane 
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the wake of the cylinder are plotted in Figures 12 and 13. Note that the flow reached a periodic solution for both 
Reynolds numbers. In addition, the relationship between the Strouhal number and the Reynolds number is compared 
with experimental results and other numerical simulations in Figure 14. The SD predictions are within the range of 
other numerical results and close to the experimental results. 

D.  Flow over a sphere 
 Finally, inviscid and viscous flows over a sphere were 
computed to further demonstrate the potential of the SD method 
for a truly 3D flow problem.  Figure 15 shows the 
computational grid having 768 total cells with quadratic 
boundaries. 
 For the inviscid flow simulation, the Mach number is chosen 
to be 0.3, again using the 4th order of accuracy in space and 3-
stage Runge-Kutta scheme in time. The velocity contours are 
displayed in Figure 16. The flow field is obviously symmetric 
indicating a low level of entropy generation. 
 For the viscous flow simulation, the Reynolds number is 
chosen to be 118. The computational streamlines are compared 
with the experimental streamlines in Figures 17. In both plots 
the steady separation bubble is readily observed, and the size of 
the separation region in the computation agrees very well with 
that of the experiment. 

 
Figure 13 Pressure history (Re=120) 

 
Figure 14 Strouhal-Reynolds relationship 

 
Figure 15 Sphere grids with quadratic 

boundary (768 elements) 

    
Figure 16  u-velocity (left), v-velocity (right) contours 
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IV. Conclusions and Future Work 
 In this paper, the multidomain spectral difference method has been successfully extended to 3D for solving the 
full Navier-Stokes equations on unstructured hexahedral grids. Because the SD method is based on the differential 
form of the governing equations, the implementation is straightforward even for high-order curved boundaries. All 
the operations are basically one-dimensional in each coordinate direction, resulting in improved efficiency. The high 
order accuracy of the SD method is numerically verified in both space and time, and the exponential decay of the 
numerical error with respect to p-refinement has been achieved for the vortex propagation problem and the Couette 
flow.  Numerical experiments for flow over a cylinder and a sphere have demonstrated the capability of the SD 
solver in the treatment of high order curved boundaries. We are currently validating the SD method for more 
complex flow problems, and working on efficient implicit solution algorithms.   
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