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An efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solution algorithm 
has been developed for a high order multi-domain spectral difference method on 
unstructured hexahedral grids. The LU-SGS solver is preconditioned by the block element 
matrix, and the system of equations is then solved with an exact LU decomposition 
approach. In addition, the effects of several parameters on the convergence rate in the 
implicit scheme have been investigated for both external and internal flows. The implicit 
scheme has shown a speed up factor of more than an order of magnitude relative to the 
multi-stage explicit Runge-Kutta scheme for several demonstration problems. 

I. Introduction 
he advantage of high-order methods (order of accuracy > 2) over first and second-order ones is well known in the 
CFD community. Generally speaking, with the same number of degrees-of-freedom (DOFs) or solution 

unknowns, high-order methods are capable of producing much more accurate results. For problems requiring very 
high accuracy, e.g., wave propagation problems in computational aeroacoustics, high-order methods have been the 
main choice. Many high-order methods were developed for structured grids, e.g., ENO/WENO methods1, compact 
methods2-3, optimized methods4, to name just a few. In the last two decades, there have been intensive research 
efforts on high-order methods for unstructured grids since many real world applications have complex geometries. 
An incomplete list of notable examples includes the spectral element method5, multi-domain spectral method6-7, k-
exact finite volume method8, WENO methods9, discontinuous Galerkin (DG) method10-12, high-order residual 
distribution methods13, spectral volume (SV) 14-17 and spectral difference (SD) methods18-21.  Among those methods, 
some are based on the weighted residual form of the governing equations, for instance the DG method10-12. Some are 
based on the integral form of the governing equations, e. g., the k-exact finite volume method8 and SV methods14-17. 
Others, such as the staggered grid multi-domain spectral method6-7 and the SD method18-21, are based on the 
differential form. 
 When one chooses a particular method for three-dimensional applications, the cost and the complexity in 
implementing the method is often an important factor. It is obvious that methods based on the differential form are 
the easiest to implement since they do not involve surface or volume integrals. This is particularly true when high-
order curved boundaries need to be dealt with. We recently developed a high order SD method22 for the three 
dimensional Navier-Stokes equations on unstructured hexahedral grids. High order accuracy and spectral 
convergence are achieved for several benchmark problems. It was also shown that the wall boundaries must be 
approximated with high-order surfaces. An explicit Runge-Kutta time integration scheme was used in the 
implementation. Although the explicit scheme is easy to implement and has high-order accuracy in time, it suffered 
from slow convergence, especially for viscous grids which are clustered in the viscous boundary layer. It is well-
known that high-order methods are restricted to a smaller CFL number than low order ones. In addition, they also 
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possess much less numerical dissipation. Therefore it takes excessive CPU to reach a state-steady solution with 
explicit high-order schemes. The computation cost of high-order explicit methods for many steady-state problems is 
so high that they become less efficient than low-order implicit methods in terms of the total CPU time given the 
same level of solution error. It is therefore imperative to develop efficient implicit solution approaches for high-
order methods to fully realize the potentials, which is the objective of the present study.  
 Implicit time-integration schemes are highly desired for improved efficiency since they can advance the solution 
with significantly larger time steps comparing with the explicit methods. Many implicit schemes have been 
developed and applied successfully to unstructured grids to accelerate convergence to steady state23-28 in the last one 
and a half decades. In this paper, an efficient implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solution 
algorithm has been developed for the high order spectral difference method on unstructured hexahedral grids. 
 The paper is organized as follows. In the next section, the formulation of the 3D spectral difference method 
including both explicit and implicit schemes is described for a hexahedral element. In Section 3, several 
representative test cases are selected to demonstrate the efficiency of the implicit scheme, and study the effects of 
several parameters on the convergence rate.  Conclusions and possible future works are summarized in Section 4. 

II. 3D Formulation of High-Order Multi-domain Spectral Difference Method  
 We assume the computational domain is discretized into unstructured hexahedral cells, which are transformed 
into the standard cube in the computational domain for efficient implementation, as shown in Figure 1. In each 
element, two sets of points are defined, namely the solution points and flux points, as shown in Figure 2. Solution 
unknowns are defined at the solution points, while fluxes are computed at the flux points. Solution points in 1D are 
the Gauss quadrature points, and the flux points are the Gauss-Labatto points. The solutions are discontinuous across 
element boundaries, and finite-volume type Riemann 
solvers are used to compute a common interface flux, 
thus providing element-wise coupling.  
 

 
After the transformation, the Navier-Stokes equations in the standard element can be written as  
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The residual is defined as 
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These equations can be viewed to be point-wise or cell-wise (element-wise) equations. The construction of the 
solution and flux in the unit cube can be expressed as follows:  
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Figure 2. Distribution of solution points (circles) and 
flux points (squares) in a standard element for a 3rd 
order SD scheme.

 
 

Figure 1. Transformation from a physical element to 
a standard element 
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where N is the given number of Gauss quadrature points in a coordinate direction,  N-1  is the degree of construction 
polynomials, and 
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For details of the numerical method including the computation of the inviscid and viscous fluxes, refer to Reference 
22. 

A. Explicit scheme 
 At cell c, using the forward Euler difference, (1) can be written as 
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 Similarly a three-stage TVD Runge-Kutta scheme can be written as  
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B. Implicit scheme 
 At each cell c, using the backward Euler difference, (1) can be written as 
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where nb indicates all the neighboring cells contributing to the residual of cell c. Therefore, the fully linearized 
equations for (3) can be written as 
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However, it costs too much memory to store the LHS implicit Jacobian matrices. Therefore, we employ a LU-SGS 
scheme to solve (5), i.e., we use the most recent solution for the nb cells,  
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The matrix 
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is the element (or cell) matrix, which is not too large for 2nd to 4th order SD schemes. (6) is then solved with a direct 

LU decomposition solver. Since we do not want to store the matrices
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Eq. (9) is then solved with multiple symmetric forward and backward sweeps with a prescribed convergence 

tolerance ε. Note that if (9) is solved to machine zero, the unsteady residual 
t

QQR c
c Δ

Δ
−)~(  is zero at each time 

step. The initial guess for 1~ +n
cQ  can be set to n

cQ~ . Therefore, the initial “unsteady residual” is the same as the steady 

residual at the last time step, i.e., )~( n
c QR . The unsteady residual is then monitored for convergence. For steady state 

problems, it is not necessary to drive the unsteady residual to machine zero. In fact, it may be more efficient to set a 
maximum number of sweeps for (9), inner_sweep to just a few (3 – 10). 

III. Numerical Results and Discussions 
 In order to demonstrate the efficiency of the implicit LU-SGS scheme and analyze the effect of various 
parameters on the convergence rate, three flow problems are chosen as the demonstration problems.  All of the 
simulations start from the free stream and converge to machine zero.  

A. Inviscid flow over a sphere 
 An inviscid flow over a sphere with a free stream 
Mach number of 0.2535 is selected as the first test to 
demonstrate the efficiency of the implicit scheme, and 
also to study the effects of CFL number and inner 
iteration control parameters on convergence 
characteristics. Figure 3 shows the computational grid 
used in the simulation, which includes 768 hexahedral 
cells. Figure 4 depicts the Mach contour distribution 
computed with the 4th order SD scheme. 
 Both the three-stage Runge-Kutta explicit and the 
LU-SGS implicit schemes with 2nd, 3rd, and 4th order 
spatial accuracy were employed in the simulation. The 
implicit scheme dramatically accelerates the convergence 
rates to the steady state for this external flow. This is 
illustrated in the Figure 5, which displays the 

 
 

Figure 3. Grid for inviscid flow over a sphere 
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convergence histories in terms of CPU time.  The 
convergence rate with the implicit scheme is more than 
an order of magnitude faster than the explicit scheme.  
 Next, we study the effects of several parameters on 
the convergence rate of the simulation. Obviously the 
CFL number is an important convergence parameter. In 
the present study, the CFL number is computed based 
on the following power law form and bounded by the 
minimum and maximum CFL number: 
 

),( maxmin CFLCFLMINCFL nα⋅=  
 
where 1≥α  is the amplification factor, and n is the 
iteration number. In the first test, minCFL  and α  are 

fixed at certain values, while maxCFL  is a variable. 
The effects of maxCFL  on the convergence rates are 
showed in Figure 6a with 0.1min =CFL  for the 3rd order 
SD scheme, and Figure 6b with 5.0min =CFL  for the 4th 
order scheme. The amplification factor is set to be 1.25 for 
both schemes. It is easily observed that the convergence 
rate strongly depends on the CFL number. The larger CFL 
number results in higher convergence rate. However, we 
also want to emphasize that a too large CFL number can 
cause the simulation to diverge. 

The second parameter on the convergence rate is the 
number of the inner iterations, i.e. the number of forward 
and backward Gauss-Seidel sweeps in the LU-SGS 
approach. One sweep is defined to include both the 
forward and backward sweeps here, and is denoted by 

sweepinner _ .  The unsteady residual in each time 
iteration step can be driven to machine zero if 

sweepinner _  is big enough. In the present simulations,  
3_ =sweepinner  is the smallest number to guarantee stability and convergence to the steady state.  In this test, we 

 
 

Figure 4. Mach contours for flow over a sphere 

        
 

Figure 5a. Residual history of inviscid flow over a 
sphere with the 2nd order spatial accuracy 

  
Figure 5c. Residual history of inviscid flow over a 

sphere with 4th order spatial accuracy   

           
Figure 5b. Residual history of inviscid flow over a 

sphere with 3rd spatial accuracy          
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let sweepinner _  vary and fix the other parameters. From Figure 7, it seems that the number of inner iterations 
doesn’t strongly influence the convergence rate for the inviscid flow over a sphere.  
 

 
 In the LU-SGS approach, the computation of the element 
Jacobian matrix is quite time consuming since its size is quite 
large. One idea to improve the efficiency is to freeze this 
matrix for several time steps. The frequency in which this 
matrix is updated is denoted by ITIMEF _ . For example, 

ITIMEF _  = 5 means the element Jacobian matrix is 
computed every 5 time steps. Figure 8 shows the 
convergence histories with different ITIMEF _  with a 3rd 
order SD scheme. In this test, the inner_sweep is set to be 5, 
and CFL ranges from 1 to 1,000,000. It can be observed that 
the bigger ITIMEF _  results in higher efficiency.   

Finally the effect of the amplification factor on the 
convergence rate is studied. In this test, α varies from 1.25 to 
3 with a 0.25 interval. Other parameters are set as follows: 

1min =CFL , 000,000,1max =CFL , inner_sweep = 5 and 
F_ITIME = 40. In Figure 9, the convergence rates are 
plotted together for 25.225.1 ≤≤ α . It appears the 
convergence rate does not strongly depend on the 
amplification factor when 25.225.1 ≤≤ α . However, the 
simulation diverged when 5.2=α or 0.3=α .  

 

 
Figure 6b. Effect of CFL number (4th order) 

 
Figure 6a. Effect of CFL number (3rd order) 

Figure 7. Effect of inner iteration (3rd) 

 
Figure 8. Effect of matrix freezing frequency 



 
American Institute of Aeronautics and Astronautics 

 

7

B.  Inviscid flow over a 3d bump 
Inviscid flow over a 3D bump was selected to represent 
internal flow problems. Figure (10) shows the computation 
grid with 3,072 hexahedral cells. Figure 11 shows the steady 
state pressure contours at the middle cutting plane computed 
with the 4th order SD scheme. 
 Both the three-stage Runge-Kutta explicit and LU-SGS 
implicit schemes were employed for this problem with 2nd, 
3rd, and 4th order spatial accuracy. Figure 12 shows the 
convergence histories. From Figure 12a, we can observe that 
the convergence to the steady state is accelerated by more 
than 20 times using the 2nd order SD scheme. For 3rd and 4th 
order SD schemes, the three-stage Runge-Kutta schemes 
failed to converge the simulations, as shown in Figures 12b 

and 12c.  
 The effects of the maximum CFL number are 
illustrated in Figure 13. For these simulations, 
α in the power law is set to be 1.25, and 

1min =CFL . Note again that the larger maxCFL  
results in higher convergence rate, which is 
consistent with the sphere case. 
 
 The effect of the number of inner iterations on 
the convergence rate is the same as the sphere 
case, i.e., the different values of sweepinner _  
don’t make much difference on the convergence 
rate, which is shown in the Figure 14. 

 
 Next, the effect of matrix freezing 
frequency is shown in Figure 15. Note 
also that the larger ITIMEF _  is, the 
higher the efficiency.  

   
Figure 9. Effect of the amplification factor 

 
Figure 10. Grid for inviscid flow over a 3D bump 

 
Figure 11. Pressure contours at the middle cutting plane 

 

  
 

Figure 12a. Residual history of inviscid flow over a 
3d-bump with 2nd order spatial accuracy 

 

  Figure 12b. Residual history of inviscid flow over 
a 3d-bump with 3rd spatial accuracy    
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Finally the effect of the amplification factor on the 

convergence rate is shown in Figure 16. Again the 
convergence rate is not strongly dependent on this 
parameter, as in the case of flow over the sphere. 

C. Inviscid flow over a NACA wing 
 The case of inviscid flow over a NACA wing is chosen 
to further analyze the effects of different parameters on the 
convergence rate. Figure 17 shows the computational grid 
with 1,248 hexahedral cells, and Figure 18 displays the 
steady state Mach contours computed with the 4th order SD 
scheme. 
 
 To test the effect of the maximum CFL number, all 
other parameters are fixed as follows: 5.0min =CFL , α  = 
1.25, and the element Jacobian matrix is updated every 40 
time steps. The convergence histories are plotted in Figure 19 for the different values of maxCFL . Again, we see that 
a bigger value of maximum CFL results in a higher efficiency. 

    

 
Figure 12c. Residual history of inviscid flow over a 

3d-bump with 4th order SD scheme 

 
Figure 13. Effect of maximum CFL number  

 

 
Figure 16. Effect of  amplification factor  

Figure 15. Effect of matrix freezing frequency  

 
Figure 14. Effect of number of  inner iteration 
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 The effect of the number of inner sweeps is shown in 
Figure 20. Obviously for this case, the less the number of 
inner sweeps, the more efficient the simulation is. 
 Finally the effect of the matrix freezing frequency on 
the convergence rate is shown in Figure 21. In this 
simulation, the other parameters are set as follows: 

5.0min =CFL , 100max =CFL  and α  = 1.25. The figure 
confirms that the less frequently the matrix is updated, the 
more efficient the simulation is. 

IV. Conclusions and Future Work 
  In this paper, an efficient implicit lower-upper 
symmetric Gauss-Seidel (LU-SGS) solution algorithm has 
been developed for a high order multi-domain spectral 
difference method on unstructured hexahedral grids. The 
implicit scheme has shown more than an order of 
magnitude of speed-up relative to the multi-stage Runge-
Kutta explicit time integration scheme for several 

 
Figure 17. Grid for inviscid flow over a NACA wing 

 

 
Figure 20. Effect of number of inner iterations  

 
Figure 18. Mach contours start at Mach = 0.2 with a 

0.025 interval for NACA wing 

 
Figure 19. Effect of maximum CFL number  

 
Figure 21. Effect of matrix freezing frequency 
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demonstration problems. In addition, the effects of several parameters on the convergence rate have been 
investigated numerically for both external and internal flows. Generally speaking, larger CFL number, less frequent 
matrix update and smaller number of inner iterations result in the faster convergence. We are currently extending the 
approach to viscous flow problems and the results will be presented in a future publication.  
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