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           The high-order spectral volume (SV) method has been extended for solving 3D hyperbolic conservation 
laws, and its implementation using an efficient quadrature-free approach has been performed to achieve high 
efficiency while maintaining accuracy.  In the SV method, in order to perform a high-order polynomial 
reconstruction, each simplex cell – called a spectral volume (SV) – is partitioned into a “structured” set of 
sub-cells called control volumes (CVs) in a geometrically similar manner, thus a universal reconstruction 
formula can be obtained for all SVs from the cell-averaged solutions on the CVs.  The SV method avoids the 
volume integral required in the DG method, but it does introduce more cell faces where surface integrals are 
needed.  In this paper, the reconstructions for the fluxes are built based on the nodal values on a selected set 
of optimized and geometrically similar nodes within each SV.  The most important advantage of this new 
approach is to use a set of universal shapefunctions for face integrals, which avoids the use of quadrature 
formulas without losing the properties of compactness and robustness that are inherent to the SV method.  In 
high-order computations for many practical 3D problems, this new approach greatly reduces the number of 
computer operations and the required storage as compared to the implementation that uses quadrature 
formulas.  In this paper, accuracy studies are performed on the 3D advection equations, and the 3D Euler 
equation for vortex evolution problems and flows around a sphere.  The designed orders of accuracy have 
been achieved for all the corresponding orders of polynomial reconstruction.  
 
 

I. Introduction 
      HE   need  for  high -order   methods    for     conservation    laws  on    unstructured    grids   has  been    widely 
        recognized in many engineering areas, for example, vortex-dominated flows, rotorcraft flow/blade-vortex 
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interaction problems, aero-acoustic noise predictions, LES/DNS for complex configurations, computational 
electromagnetics (CEM), etc.  In order to make CFD a useful tool for the real-world problems, the criteria for a 
high-order algorithm to meet should at least be 1) accurate; 2) conservative; 3) geometrically flexible; 4) 
computationally efficient; 5) easy to implement.  The current leader of high-order methods on unstructured grids is 
the discontinuous Galerkin (DG) method1-5.  The spectral volume (SV) method6-10 and the spectral difference (SD) 
method11-13 are two recently developed high-order methods which share similarities with the DG method while 
having differences on how degrees-of-freedom are updated.  In this paper, we focus on extending the quadrature-
free SV method14 to three dimensions.  
         The SV method is a conservative Godunov-type finite volume (FV) method capable of capturing 
discontinuities.  The SV method combines two key ideas which are the basis of the finite volume and finite element 
methods. These are the Riemann solver, which accounts for the physics of wave propagation, and the high-order 
polynomial reconstruction. However, instead of using a (large) stencil of neighboring cells to perform the 
reconstruction as in the k-exact finite volume methods, here in the Spectral Volume methods a simplex unstructured 
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grid cell – called a spectral volume – is partitioned into a “structured” set of sub-cells called control volumes (CVs), 
and cell-averaged solutions on these sub-cells are then the degrees-of-freedom (DOFs). These DOFs are used to 
reconstruct a high-order polynomial inside the SV.  If all the spectral volumes are partitioned in a geometrically 
similar manner, a universal reconstruction formula can be obtained for all simplexes.  With reconstructed solutions 
at both sides of an interface, the numerical flux can be computed using an approximate Riemann solver. Then the 
DOFs can be updated to high-order accuracy using the usual Godunov-type finite volume procedure.  Numerical 
tests in both 1D and 2D have verified that the SV method is accurate, conservative, efficient, geometrically flexible, 
and easy to implement.  Recently the SV method has been extended to 3D conservation laws10,15.   
         Here we want to point out that in a DG method the DOFs are updated by using a weighted residual approach 
including both face and volume integrals, while in a SV method the DOFs are updated by using a finite volume 
approach including only face integrals.  However, the SV method does introduce more interfaces where more 
Riemann problems are solved.  For two-dimensional Euler equations, both methods seem to achieve similar 
efficiency16.  For 3D flow problems, the partition of a SV cell (tetrahedron) can be complicated and the number of 
the aforementioned sub-faces can be large (for example, roughly 130 for a cubic partition). Therefore quite a number 
of Gauss quadrature points might be needed (for example, roughly 800 for a cubic partition) per SV for the 
traditional implementation of a SV method to compute the face integrals to the desired precision, making the 3D SV 
method expensive. 
         A quadrature-free method was proposed by Atkins and Shu17 for DG method, and was tested in 1D scalar 
advection and 2D scalar advection and linear Euler equations.  In this paper we extend a quadrature-free 2D SV 
method14 to three dimensions, which handles the face integrals more efficiently.  In this approach, the SV method is 
implemented using a set of geometrical-similarly nodes within each SV.  The set of nodes was chosen to be near 
optimal for each SV to reconstruct a degree k+1 polynomial approximation for the flux vector.  To avoid the 
quadrature formulas, a universal reconstruction is utilized for the face integrals of numerical flux on all faces to save 
computer resources.  The flux integrals are computed analytically after the shape functions defined by this nodal set 
are integrated analytically for a standard element during preprocessing.  This reconstruction of the integral shape 
functions is universal for all SVs if a nodal set is distributed in a geometrically similar manner for all SVs.   
         The paper is organized as follows. In Section 2, we review the traditional formulation of 3D SV method.  In 
section 3, the quadrature-free approach is described in detail.   Numerical results including accuracy studies for 3D 
advection equations, as well as Euler equations for 3D vortex evolution and sphere are presented in Section 4.  
Finally, conclusions and some possibilities for future work are given in Section 5. 
 
 

II.  Review of the General 3D Spectral Volume Method 
         Consider the 3D conservation law in the following form, 
                                    0Q F

t
∂

+∇ =
∂

i                                                                        (1) 

on domain  and [ T,0×Ω ] 3RΩ ⊂  with the initial conditions within Ω  and appropriate boundary conditions 
on .  The conservative solution variable Q can be a scalar or a vector, and the generalized flux F can be a scalar, 
vector, or even tensor.  Domain  is discretized into I nonoverlapping tetrahedral cells (SVs) which are further 
partitioned into CVs in a geometrically similar manner, as shown in Figure 1.  For a complete 3D polynomial basis, 
a reconstruction of degree of precision p requires at least N CVs ( C i

Ω∂
Ω

, , 1,..., ; 1,..., ( )i j I j N p= = ), where  

                                                       (2)  ( ) ( 1)( 2)( 3) / 6N p p p p= + + +
From the point of view of best interpolation polynomial, the optimal partition should make the Lebesgue constant 
minimum7.  Therefore we use the following partitions which have been optimized for a minimal Lebesque constant.  
Figure 1 shows the linear, quadratic, and cubic partitions of a tetrahedral SV given by Chen18, where each CV is 
enclosed by planar polygonal faces for ease of computation. The Lebesque constants are 5.08 and 6.87 for quadratic 
and cubic partitions, respectively. 
         Integrating (1) over each CV, we obtain 

                                                  ,

1,

1 ( )
r

r

K
i j

AA
ri j

dQ
F n dA

dt V =

+ ∑∫ i 0=                          (3) 

where ,i jQ is the cell-averaged solution on , and  represents the faces (with normal,i jC rA
rAn ) that enclose .   ,i jC
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                     (a)   Linear partition                                                  (b) Quadratic partition 
 

                                             
                                                            (c) Cubic partition: 10-sided sub-cells  
 

        
(d) Cubic partition: 6-sided and 19-sided sub-cells 

 
Figure 1. Partition of a tetrahedron 
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A high-order polynomial is then reconstructed within each SV such that 

                                               
,

,
1 ( , , )

i j

p
i iC

ij
jP x y z dxdydz Q

V
=∫                             (4)  

where is a polynomial (or vector polynomial) of degree p for the ith SV.  Let denote the space of degree p 
polynomials in three dimensions.  To actually solve the reconstruction problem, we introduce the  

p
iP pD

complete polynomial basis, , where .  Therefore can be 
expressed as  

( , , )l pe x y z D∈ ( )
1{ ( , , )}N p

p lD span e x y z == l

l
i le

a

p
iP

                                                                                                                                                             (5) 
( )

1

N p
p

i
l

P a
=

= ∑
or in the matrix form 
                                                                                                                                                                      (6) p

iP e=
where e is the basis function vector [ ] and a is the reconstruction coefficient 1,..., Ne e
vector [ .    Substituting (5) into (4), we then obtain 1[ ,..., ]T

Na a

                
,

( )

,
1

1 ( , , ) , 1,..., ( ).
i j

N p
l
i l i jC

lij

a e x y z dxdydz Q j N p
V =

= =∑ ∫                                                                (7) 

Let Q  denote the column vector  . Equation (7) can be rewritten in the ,1 ,[ ,..., ]T
i i NQ Q

matrix form 

                                                          Ra Q=                                                                                                              (8) 
where the reconstruction matrix 

                        
,1 ,1

, ,

1
1 1

1

1 1( , , ) . . . ( , , )

. . . . . .
1 1( , , ) . . . ( , , )

. . .
i i

i N i N

NC C
i i

NC C
iN iN

e x y z dV e x y z dV
V V

R

e x y z dV e x y z dV
V V

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫

                                                      (9) 

The reconstruction coefficients can be solved as a
                                                              1a R Q−=                                                                                                     (10) 

provided that the reconstruction matrix R is nonsingular. Substituting (10) into (5) or (6),  is then expressed in 

terms of cardinal basis functions or shape functions 

p
iP

1[ ,... ]NL L L= : 

                                                           
,

1

( , , )
N

p
i j i j

j

P L x y z Q L
=

=∑ Q=                                                       (11) 

Here L is defined as  
                                                                1L eR−≡                                                                                                     (12) 
which satisfies  

                                                             
,

1

i j

l
ij C

L dV
V jlδ=∫                                                                                           (13) 

Equation (11) gives the functional representation of the state variable Q within the SV.  Therefore the function value 
of Q at a quadrature point or any point ( , , )rq rq rqx y z  within the ith-SV is thus simply 

                                                    
( )

,
1

( , , ) ( , , )
N p

p
i rq rq rq j rq rq rq i j

j

P x y z L x y z Q
=

= ∑                                                         (14) 

Note that once  the polynomial  basis functions   are  chosen, the  shapefunctions le jL are  solely determined by the  
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partition of a SV cell.  The shape and the partition of a SV cell, in general, can be arbitrary as long as the 
reconstruction matrix R is nonsingular.  However, different shapes of SV cells can result in the same expression of 
the shapefunctions (in terms of a few geometric parameters) if a geometrically similar partition can be applied to 
them.  Since the volume integral of polynomial basis in (9) can be carried out easily over a transformed standard 
tetrahedron, the shape functions L, which are universal for all SVs, can be calculated analytically and stored as a 
preprocessing step. 
         The flux integration over a face is performed using the Gauss quadrature formula  

 
American Institute of Aeronautics and Astronautics 

 

5

)                         (15) 
1

( ) ( ( , , )) (
r

J
k

rq rq rq rq r r
qA

F n dA w F P x y z n A O h
=

⋅ = ⋅ +∑∫
where J is the number of quadrature points on the rth face, and  are the Gauss quadrature weights, and rqw
( , , )rq rq rqx y z are the Gauss quadrature points.  Since a discontinuous solution can exist between SVs, an 
approximate Riemann solver is used to find fluxes for faces on SV boundaries.  The 3rd-order TVD Runge-Kutta 
scheme is employed for time integration.  
 
 
                        III.  Formulation of Quadrature-Free Approach for 3D SV method 
         In all the previous implementations of SV method, the surface integrals are evaluated with quadrature formulas 
that are appropriate to the face shape and to the required degree of accuracy.  In 1D or 2D cases, Gauss quadrature 
formulas are very efficient.  But in the 3D case, the number of quadrature points can be very large for high-order 
SVs due to the large number of interior sub-faces within each SV, making the 3D SV method very expensive.   To 
overcome this deficiency, we propose an efficient quadrature-free approach for the SV method.  
          In the new approach, a near optimal nodal set is selected from Ref.[19].  This nodal set is then used to 
reconstruct a degree k+1 polynomial approximation for the flux vector, and then the flux integrals are computed 
analytically, without the need for Gauss quadrature formulas.  The flux vector F is approximated in terms of the 
basis set {bl} (constructed from simple monomials), 

                                                                                                                                                               (16) 
1

M

l l
l

F b
=

≈∑ e

If F(Q) is linear, then ( )M N p= ; however, when F(Q) is nonlinear, M must be at least  to obtain the 

design accuracy of p+1.  We prefer to use 

( 1N p + )
)( 1M N p= +  for all the cases, thus 1( , , )l pe x y z D +∈ , where  

 The reconstruction problem reads as follows: Given the nodal values on a set 

of nodes within the SV cell i, find 

( 1)
1 { ( , , )}N p

p l lD span e x y z +
+ = 1=

p

,i nF
1

1
p

iP D+
+∈  such that  

                                                                                                                                            (17) 1
,( , , )p

i n n nP x y z F+ = i n

where 

                                                                                                                             (18) 1

1
( , , ) ( , , )

M
p l

i i l
l

P x y z b e x y z+

=

= ∑
Therefore a Lagrange shape functions defined by the nodal set can be found from (17) and (18).  Substituting (17) 
into (18) yields 

                                  ,
1

( , , ), 1, 2,....,
M

l
i n i l n n n

l

F b e x y z n M
=

= ∑ =                                                     (19) 

Let F  denote the column vector .  Equation (19) can be rewritten in the matrix form ,1 ,[ ,..., ]T
i i MF F

                                                         Sb F=                                                                                                             (20) 
where the reconstruction matrix 



                                                                          (21) 
1 1 1 1 2 1 1 1 1 1 1

1 2

( , , ) ( , , ) . . ( , , )
. . . . . . . . . .

( , , ) ( , , ) . . ( , , )

.

.

M

M M M M M M M M M M

e x y z e x y z e x y z
S

e x y z e x y z e x y z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

The reconstruction coefficients can be solved as b
                                                  1b S F−=                                                                                                                 (22) 
provided that the reconstruction matrix S is nonsingular. Substituting (22) into (18), 1p

iP +  is then expressed in terms 

of shape functions 1[ ,... ]MZ Z Z= : 

                                               1
,

1
( , , )

M
p

i n i n
n

P Z x y z F+

=

=∑ Z F=                                                                                (23) 

Here Z  is defined as  
                                                    1Z eS −≡                                                                                                                 (24) 
which satisfies  
                                             ( , , )n m m m mnZ x y z δ=                                                                                                      (25) 
Again, this reconstruction is universal for all SVs if a nodal set is distributed in a geometrically similar manner for 
all SVs.  The flux vector F can be computed at any point using  

                                         
,

1

( , , ) ( , , )
M

i n
n

i nF x y z Z x y z F
=

= ∑                                                                                        (26) 

         For the flux on each internal face, the flux integral can be computed as a weighted average of the flux 
evaluated at the nodal set, i.e., 

                    ,, ,
1 1

( ) ( , , ) ( )
M M

n fi n f n i n f f
n nf f

F ndS F n Z x y z dS F n A Z
= =

= =∑ ∑∫ ∫i i i                                                       (27) 

where  ,i nF is the flux vector evaluated at node n on the i-th SV cell;   ,n fZ  is the face-averaged value of shape 
function for face f, which is universal for all SVs if a nodal set is distributed in a geometrically similar manner, and 
thus can be computed during preprocessing for a standard element and then the physical face area fA  is multiplied.  
Compared with the evaluation of flux integration in (15) by using Gauss quadrature formula, obviously the 
quadrature-free flux integration given by (27) is much less costly to evaluate for 3D cases.     
         For the SV-bounding faces,  the Riemann flux integral can also be computed without the use of a Gauss 
quadrature.   For example, Rusanov flux gives 

                             1ˆ [ (
2

R L RF n F n F n Q Qλ= + − −i i i )]L                                                                                    (28) 

where λ  is the local maximum eigenvalue based the right and left cells.  Integrating (28) on face f  yields 

                            1ˆ [ (
2

R L R L

f f f f

F ndS F ndS F ndS Q Q dSλ= + − −∫ ∫ ∫ ∫i i i ) ]                                                     (29) 

We notice that  
                         (1)Oλ ∼ ,  1( ) (R L pQ Q O h )+− ∼ ,  

         and         ,   1 1( )R p p
RF P O h+ ++∼ 1 1( )L p p

LF P O h+ ++∼

Hence  is high-order small term compared with 1( ) (R L pQ Q O hλ +− ∼ ) RF and LF , which allows us to use a face-

centered value based on a average state, ,c fλ , to replace the local λ in (29).  Then (29) becomes 

                              ,
ˆ [ (

2
f R L R L

c f
f

A
F ndS F F Q Qλ= + − −∫ i )]                                                                          (30) 

where 
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1 1,

1 1,

R R L L

f ff

R R L L

f ff f

F F ndS F F ndS
A A

Q Q dS Q Q dS
A A

= =

= =

∫ ∫

∫ ∫

i i
f                                                                              (31) 

Our numerical tests in the next section have verified the above accuracy analysis, and have shown that this 
quadrature-free approach preserves the accuracy of the SV method.   
 

IV. Numerical Results 

           In order to demonstrate the new method, we use the 3D advection equations and 3D Euler equations to 
analyze the accuracy the present method can achieve by comparing with the exact solutions.  For all cases the 
Rusanov numerical flux is applied. The third-order TVD Runge-Kutta scheme is used for time integration in all 
cases, and the time step  used is small enough so that the numerical errors are dominated by the spatial 
discretization, independent of the time step.  Given the initial values at the nodal set, the CV-averaged solution 
values were initialized by using the CV-averaged node-based shape functions, without the need of Gauss quadrature 
for preparing the CV-averaged initial conditions.  The partition of the SV cells has been taken from Ref.[10] or [18]. 

t∆

 
1.  Accuracy Study with 3D Steady Linear Advection 
         The governing equation for this problem is 

                                       0=
∂
∂

+
∂
∂

+
∂
∂

z
u

y
u

x
u                                                                                                             (32)  

The boundary conditions are  
                  sin[ (2 )]u x y zπ= − −  for inflow; extrapolation of u for outflow.                                      (33)  
The above equations describe a steady sinusoidal wave with unit wave speed in all three Cartesian directions. It is 
obvious that the exact solution for this problem is sin[ (2 )]u x y zπ= − − .  We solved it numerically by using 
pseudo-time integration as follows to find its steady-state solution, 

                                   0u u u u
x y zτ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                                                                                         (34) 

         We generated a sequence of regular unstructured grids (Figure 2) in a cubic domain.  The domain size used 
here is [ .   First the cubic domain is represented by 0,1] [0,1] [0,1]× × N N N× × cubic cells, and then each cell is cut 
into 6 tetrahedra.  Taking , we obtained a sequence of unstructured grids for the accuracy analysis 
under grid refinement.  In the following figures, cell size 

10, 20, 40N =
3 6I N= .   The solution is taken as converged when the 

norm of the residual is reduced to machine zero. 2L
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Figure 2.  Regular grid for 3D domain (10x10x10x6 tetrahedra) 



         Figure 3 shows the error norms (
1 andL L∞

) of the present numerical solution comparing with the exact 
solution. The averaged slope is about 1.98 for the 2nd-order cases, and 2.73 for the 3rd-order cases.  The results show 
that the nearly optimum order of accuracy is attained for the 2nd-order and 3rd-order cases, respectively.  Based on 
that we are satisfied with our results of order of accuracy for the 2nd –order and 3rd-order cases. 
         Figure 4(a) gives the contour of the solution on the fine mesh for the 3rd-order method, which shows the 
advection solution in a clear wave pattern. The number of DOFs used is . 63.84 10×
 
 

      
                         (a) norm of error                                                        (b) 1L L∞ norm of error 
 

Figure 3.  Linear advection:  Error vs. cell size. 
 
 
 

      
              (a)  Solution of Linear advection                                        (b)  Mach number for vortex evolution 
 

Figure 4. Contours of solution 
 
 
 
 

 
American Institute of Aeronautics and Astronautics 

 

8



2. Accuracy Study with 3D Euler Equation 
         The 3D Euler equation in conservative form can be written as  

                             0Q F G H
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                                                                                         (35) 

where  is the conservative solution variables, are the inviscid flux given below, Q , ,F G H

       
2

2

2

, , ,

( ) ( ) ( )

u v w
uvu u p uw

Q v F uv G v p H vw
w uw vw w p

E u E p v E p w E p

ρ ρρ ρ
ρρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρ ρ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ +⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ +⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
+ +⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ +⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

⎪
⎬
⎪
⎪
⎪

                                                          (36) 

Here ρ is the density, u,v,w are the velocity components in x, y, and z directions, p is the pressure, and E is total 
energy.  The pressure is related to the total energy by 
                                       2 2 21 (

1 2
pE u vρ

γ
= + + +

−
)w                                                                                               (37) 

with ratio of specific heat 1.4γ = . 
         The vortex evolution problem is ideal to test the accuracy of the present method for Euler equations because it 
has an analytical solution.  This testing problem was used by Shu20 in 2D cases, and Sun21 in 3D cases.  Here the 
mean flow is { , , , , } {1,1,1,0,1}u v w pρ = .  An isotropic vortex is then added to the mean flow, i.e., with 
perturbations in u , v , and temperature T , but no perturbation in velocity w and entropy /S p γρ= .   

                                     

2

2

0.5(1 )

2
1

2

( , , ) ( , ,0)
2

( 1)
8

0

r

r

u v w e y x

T e

S

εδ δ δ
π

γ εδ
γπ

δ

−

−

= −

−
= −

=

                                                                           (38) 

where , and the vortex strength 2 2r x y= + 2 5ε = .  The computational domain is taken to be a cube with size of  
.  A sequence of grids were generated similarly as the previous problem for N=10,20,40. [ 5,5] [ 5,5] [ 5,5]− × − × −

20 40 60 8010-5

10-4

10-3

10-2

2nd-order
3rd-order

20 40 60 80

10-3

10-2

10-1

2nd-order
3rd-order

         The characteristic inflow and outflow boundary conditions are imposed on the boundaries in x and y directions, 
and extrapolation in the z direction.  It can be easily verified that the exact solution given by the Euler equation with 
the above specified initial condition and boundary conditions represents the vortex moving from its initial location 
in the diagonal direction on the x-y plane with the speed (1,1,0).   
 
 
             
 
 
 L∞1L
 
 
 
 
 
 
 
 
                                   (a) norm of error.                                                     (b) 1L L∞

norm of error  
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Figure 5.  Vortex evolution problem: Error vs. Cell size 



         Figure 5 shows the error norms (
1 andL L∞

) of the present numerical solution comparing with the exact 
solution. The averaged slope is about 1.88 for the 2nd-order cases, and 2.73 for the 3rd-order cases.  Again, we see 
here that the nearly optimum order of accuracy is attained for both 2nd-order and 3rd-order cases, respectively.  The 
Mach number contour on the fine mesh for the 3rd-order method is given in Figure 4(b), which shows the vortex 
location at t=2.  The number of DOFs used is . 619.2 10×
 
3. Flow around a Sphere 
               The inviscid flow around a sphere with Mach=0.3 is selected to test the present method for solving Euler 
equation with curved boundaries.  A sequence of irregular unstructured grids were generated as shown in Figure 6.  
In order to handle the curved boundary, we follow the approach of Krivodonova and Berger22 originally developed 
for the DG method. The basic idea employed here is that straight–sided SVs, rather than traditional curved SVs, are 
employed at wall boundaries, but a zero-flow boundary condition is enforced for the physical boundary as opposed 
to the computational (polygonal or polyhedral) boundary. This allows us to utilize the same reconstruction for the 
SVs on curved boundaries that is already in use for all other SVs.  The Runge-Kutta scheme with local time stepping 
at CFL=0.5 is used for time integration.  The solution is taken as converged when the norm of density residual 
drops 8 orders of magnitude.  Figure 7 shows the Mach contours for 2nd-order and 3rd-order solutions.  Note that 
the solution becomes more smooth and symmetric with the increase in the order of accuracy and grid resolution. 

2L

 

                               
                    Coarse grid: 4,856 tetrahedra                                                 Medium grid: 25,027 tetrahedra 
 

                                                
 Fine grid: 53,520 tetrahedra 

 
Figure 6.  Unstructured meshes for solving the flow field around the sphere 
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                  Coarse grid: 2nd order                                       Coarse grid: 3rd order 
 
 

     
                  Medium grid: 2nd order                                        Medium grid: 3rd order 
 
 

     
                   Fine grid: 2nd order                                           Fine grid: 3rd order 
 

Figure 7.  Mach contours for flows around the sphere, Mach=0.3 
 
 

V. Conclusions 

         The quadrature-free spectral volume method has been extended to 3D conservation laws including linear scalar 
advection equation and nonlinear Euler equations.  From the nodal values on a selected set of optimized and 
geometrically similar nodes within each SV, we found a set of universal shape functions for face integrals, which 
avoids the use of quadrature formulas without losing the properties of compactness and robustness that are inherent 
to the SV method.  In high-order computations for 3D problems, it has been shown that this new approach greatly 
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reduces the number of flux calculations per SV that required in the traditional SV method.  Several representative 
inviscid cases were used to test the new quadrature-free SV method.  It has been found that the near optimum order 
of accuracy can be obtained in both  and 1L L∞ norms for both 2nd and 3rd-order simulations in 3D.  This shows that 
the new approach preserves the stability and accuracy.  In addition, the test case of inviscid flow over a sphere 
demonstrates the ability of the new approach to effectively handle curved boundaries using a simple curved wall 
treatment.  The extension of the quadrature-free SV method to 4th-order in 3D, development of a quadrature-free 
implicit solver, and optimization of other SV partitions are now under way, and will be reported in future 
publications. 
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