
                                                                        
American Institute of Aeronautics and Astronautics 

 

1

A p-Multigrid Spectral Difference Method with Explicit 
and Implicit Smoothers on Unstructured Grids 

 

C. Liang1, R. Kannan2 and Z.J. Wang3 
Department of Aerospace Engineering, Iowa State University, Ames, IA 50014 

The convergence of high-order methods, such as recently developed Spectral 
Difference (SD) method, can be accelerated using both implicit temporal advancement 
and a p-Multigrid approach. A good combination of these two can significantly improve 
the efficiency of the SD method for steady flow problems. In this paper, we demonstrate 
a p-Multigrid approach developed for a 2D Euler solver using the SD method.  A fast 
preconditioned Lower-Upper Symmetric Gauss Seidel (LU-SGS) implicit method is 
developed and tested for both linear scalar, and nonlinear Euler equations. Meanwhile, a 
five-stage Runge-Kutta explicit method is employed for comparison. We are able to 
achieve significant speedup (up to two orders) using both p-Multigrid method and the 
implicit smoother while maintaining very stable convergence property and nearly ideal 
order of accuracy. The numerical results are very promising, and indicate that the 
approach has great potential for 3D flow problems. 
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d                   = defect of residual for Multigrid approach 
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I                    = Restriction/prolongation operator  

ikM ,            = Shape functions defined by the flux points 
pN               = Number of unknown points of a cell 

Q~                 = Solution at unknown points 

)~(QRc         = Current cell residual 
 
Subscripts 
c                  =  current cell 
i                   = index of cell 
j                   = index of solution points 
k                  = index of flux points 
nb                = neighbouring cells 

 
1. Introduction 

 
The SD method has been recently developed by Liu et al. [16] for wave equations on unstructured triangular 
grids and further developed by Wang and Liu [30] for 2D Euler equations. It has been shown that the 3rd –order 
SD produces more accurate results than a 2nd-order Finite-Volume method on a much coarser grid with fewer 
solution unknowns. Recently, the extension to the Navier-Stokes equations was also presented in [20,31].  
 
With the high-order SD method, it is clearly possible to achieve lower error levels than the traditional first order 
or second order methods. However, all the above developments of the SD methods employed explicit TVD 
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Runge-Kutta schemes for the temporal advancement and those numerical experiments are all performed on 
single grids. These explicit temporal discretizations can be implemented with ease. In addition, they require 
limited memory and can be easily vectorized and parallelized. However it is well-known that the explicit 
scheme is limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order of the SD 
method is high or the grid is stretched due to complex geometries, the convergence rate of the explicit scheme 
slows down rapidly. Solution strategies to remedy this problem include the pre-conditioning methods [28], 
implicit methods [12] and multigrid methods [22]. 
 
The implicit methods are normally formulated by the linearization of a given set of equations. The development 
of implicit methods for high order methods like Discontinuous Galerkin methods [17,21] has been very 
noteworthy. Even though these implicit methods offer extremely high speedup, they need huge memory to store 
the associated matrices. This is greatly felt when the high order methods is applied to 3D problem. One 
intelligent way to mitigate the above problem is to use the traditional multi stage Runge-Kutta method as the 
high level smoother and the implicit scheme for the lower levels [17]. 
 
The p-multigrid method employs smoothing operators which hasten the convergence by using the coarse levels 
constructed by reducing the level of the interpolation polynomial p. This method was initially proposed by 
Ronquist and Patera [25], and extended by Maday and Munoz [19]. The acceleration of the convergence by the 
p-multigrid algorithm on Euler equations was demonstrated by Bassi and Rebay [2], Fidkowski et al [8], 
Nastase and Mavriplis [21] and Luo et al. [17] with the Discontinuous Galerkin method.  
 
In this paper, we adopt an efficient preconditioned implicit LU-SGS approach [4,13] as the iterative smoother 
for the p-multigrid algorithm. The original LU-SGS approach was developed by Yoon and Jameson on 
structured grids [12,33]. The preconditioned LU-SGS approach further improved the efficiency. For comparison 
purpose, we also use an explicit TVD Runge-Kutta scheme as a p-multigrid smoother. As explained in the 
earlier paragraph, the high-order implicit methods require much larger storage of Jacobian matrices than the 
explicit method. Therefore, in this paper, we also intend to adopt explicit smoother for the high p-levels and 
simultaneously employing implicit schemes embedded with much smaller size of Jacobian matrix on low p-
levels.  
 
The paper is organized as follows.  Section 2 presents the governing equations using the corresponding SD 
method. Temporal relaxation schemes are discussed in Section 3. In Section 4, we focus on the nonlinear FAS 
p-Multigrid method. Section 5 includes the validations of the implicit scheme over the wave equations on a 
single grid followed by the results and discussion of the Euler equations. In the end, some conclusions are drawn 
in Section 6.  
 

2. Governing Equations  and the SD Formulation 
 
The SD method combines the salient features of structured and unstructured grid methods to achieve high 
computational efficiency and geometric flexibility. It utilizes the concept of discontinuous and high-order local 
representations to achieve conservation and high accuracy. Universal reconstructions are obtained by 
distributing unknown and flux points in a geometrically similar manner for all unstructured cells. Figure 1 
shows the placement of unknown and flux points for a triangular cell. In this paper, we consider first order (p0), 
second order (p1) and third order (p2) schemes. The unknowns are updated using the differential form of the 
conservation law equations by approximating the flux derivatives at these unknown points. In order to obtain the 
flux derivatives, we use a polynomial reconstruction of the fluxes from their values at available flux points to 
the unknown points. As a result, the method is defined as a difference method.  The SD method is similar to the 
multi-domain spectral method developed by Kopriva [14,15] and can be viewed as an extension of the multi-
domain spectral method to a simplex unstructured grid.  
 
We could write most linear or nonlinear equations in 2D conservative form 
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(a)   

(b) 

  
(c ) 
 
Figure 1: Placement of unknown ( ) and flux ( ) points for a triangular element. (a): First order; (b):  Second 
order; (c): Third order. 
 
The current cell residual term )~(QRc  can be evaluated once the neighbouring three cells are known. We can 

denote the unknown and flux points for cell i  as ijr ,  and ikr ,  respectively. The solutions of Q~  at flux points 

can be conveniently constructed using a Lagrange-type polynomial basis function )(, rL ij  as 

                                           ∑
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where pN  is the number of unknown points required to support a degree p polynomial construction as already 

illustrated in figure 1. As a result, )(~
krQ is continuous inside individual cell element, while across the element 

interfaces, it is discontinuous and the inviscid fluxes )(~
krf  and )(~

krg  are not uniquely determined.  We 
employ one-dimensional Riemann solvers, namely, the Rusanov [26] or Roe [24] flux to obtain a unique normal 
component of the flux )(~)(~)( kkk rgrfrF +=  at the element boundary interface for an edge point. The local 

cell values are used for the tangential components as shown in figure 2, i.e. ),)(( nL FlQF •  and 

),)(( nR FlQF •  for the left cell and right cell respectively. However, for the corner flux points, multiple 
values are allowed for different cells using the procedure as shown in [30]. In other words, two faces are 
associated with a particular corner point of a cell and we can use either the Rusanov or Roe flux to compute 
unique normal components of the two fluxes, i.e. 1nF  and 2nF . A flux vector )( ,ikrF  at this corner point for 
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this particular cell can be constructed using 1nF  and 2nF . Once all the flux vectors are determined, they are 
used to form a degree p+1 polynomial, i.e., one order higher than the polynomial used in (2.3).  The flux at any 
location can be expressed as follows,   
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where )(, rM ik are the set of shape functions defined uniquely by the flux point locations.  We are now ready to 
compute the divergence of the flux at any locations inside the particular cell and for the unknown point locations, 
they can easily computed according to  
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Figure 2: Flux computation for a corner ( ) and an edge point ( ) using one-dimensional Riemann solvers. 

 
The residual term )~(QRc  used in (2.1) is simply the negative value of the divergence. Once the SD spatial 
discretization is completed, attention now is turned to temporal relaxation schemes.   

 
3. Time relaxation schemes 

 
In order to solve the flow to a steady state from a nearly arbitrary initial guess, a relaxation scheme is needed. 
The unsteady equation is considered in the current paper and the time integration schemes (either explicit or 
implicit schemes) can be used as a smoother.  
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The main advantage of the Runge Kutta scheme is that it requires little memory for storage. In addition, this 
method is inherently simple and so is easy to program. These are the main reasons for it being one of the most 
preferred methods of time integration. 
 
The main bottleneck associated with the Runge Kutta scheme is the limit imposed on the time step.  Euler (and 
Navier Stokes) equations for realistic geometries entail a rather strict limit on the time step.  Even though the 
above can be circumvented by using a very high order (several RK steps) scheme, it is seldom used as it 
required lots of storage and thus adversely affects its simplistic nature. Therefore, a primary effort in this paper 
is devoted to a new LU-SGS implicit scheme and it is explained in the following. 
 
At each current cell c, using the backward Euler difference, (3.1) can be written as 
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Let  n
c

n
cc QQQ ~~~ 1 −=Δ +  and linearizing the residual, we obtain 
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where nb indicates all the neighbouring cells contributing to the residual of cell c. Therefore, the fully linearized 
equations for (3.2) can be written as 
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However, it costs too much memory to store the left-hand side implicit Jacobian matrices. Therefore, we employ 
a LU-SGS scheme to solve (3.4), and it utilizes the most recent solution for the neighbouring cells,  
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The Jacobian matrix  
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is the element (or cell) matrix, which is not very big for 2nd to 3rd order SD schemes. For instance, D is [6x6] for 

the 3rd order SD wave equation. Neither do we want to store the matrices
nb
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manipulated as follows 
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Let *)1()1(*
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c QQQ Δ−Δ=Δ ++ . We can combine (3.5) and (3.7) together to obtain 
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Equation (3.8) is then solved with a direct LU decomposition solver for an element and the solver is swept 
symmetrically forward and backward through all the computational grid elements. Once (3.8) is solved to 
machine zero, the unsteady residual is zero at each time step.  For steady flow problem, we found that the term 

t
Qc

Δ
Δ *

 in the right-hand-side of (3.8) can be neglected and leading to quicker convergence. Note that *
cQΔ  is 

the difference between the current solution *
cQ  and the solution at the previous time level n

cQ . In reality, the 

entire system is swept several times in order to proceed to the next time level. As a result, *
cQΔ  is influenced by 

the solution occurred several sweeps ago. This introduces an under-relaxation effect. Hence, neglecting the 

t
Qc

Δ
Δ *

 term accelerates the convergence. We define the solver obtained using (3.8) as implicit normal approach.  
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If 
t

Qc

Δ
Δ *

 term is dropped, the iterative solver is defined as implicit simplified approach. Some comparison 

between these approaches will be made in section 5.  
 

4. p-Multigrid Method 
 
The Gauss-Seidel or Jacobi iterations produce smooth errors when applied on the above mentioned nonlinear 
equations. The error vector has its high frequencies nearly removed in a few iterations using a higher order 
polynomial; but low frequencies are removed very slowly.  The key idea of the p-Multigrid method is to solve 
the nonlinear equations using a lower order polynomial such that “smooth becomes rough” and low frequencies 
act like high frequencies. Such a p-Multigrid method has been used for high-order discontinuous Galerkin 
method; see [7, 9, 19, 30]. The p-Multigrid method operates on a sequence of solution approximations of 
different polynomial orders. Therefore it offers the flexibility of switching between higher and lower polynomial 
levels without changing the actual geometrical nodal grid points.  
 
To accomplish the communication between different levels, restriction ( 1−p

pI , 2
1
−
−

p
pI ) and prolongation 

( p
pI 1− , 1

2
−
−

p
pI ) operators are required in addition to the aforementioned relaxation scheme as a smoother. 

Restriction consists of moving solutions and their residuals at the unknown points from a space of higher 
polynomial order to a lower polynomial order. Prolongation refers to a reverse procedure in which lower order 
polynomial solution correction is redistributed as corrections to the solutions of the unknown points at a higher 
polynomial order.  
 
Classical multigrid method begins with a two-level process. First, iterative relaxation is applied using the higher 
order polynomial, thus basically reducing high-frequency errors. Then, a “coarse-grid” correction is applied, in 
which the smooth error is determined at the lower polynomial level. This error is interpolated to the higher 
polynomial level and used to correct the existing higher order solutions. Applying this method recursively to 
solve the lower polynomial level problems leads to multigrid.  
 
Defining three polynomial levels from the highest to the lowest as p, p-1 and p-2, we want to solve: 

                         ppp rQR =)( ,                                                                       (4.1) 

and the rhs pr  is zero for the highest level polynomial; 

  111 )( −−− = ppp rQR  ;                                                                  (4.2) 

222 )( −−− = ppp rQR .                                                                  (4.3) 
 

 
We want to employ the implicit LU-SGS schemes as the smoothers for all three levels.  For simplicity, the 
following steps summarise a standard two-grid scheme with a V cycle at p and p-1 levels. 
 

• Improve pQ  by application of a few times the smoother similar as equation (3.7)   
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• Restrict the latest solution pQ  to the coarser level for an approximate solution 1−pQ  
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p
pp QIQ 10

1
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• Compute the defect on the finest level 
                                             ( ) ( )pppppp QRQRrd −=−=                                   (4.6) 

• Compute the right hand side of equation (4.2) as  
                                       ( ) p

p
pppp dIQRr 10
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• Improve 1−pQ  by application of a few times the smoother   
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• Correct the current solution  on the finest level by 

)(~ 0
111 −−− −+= pp

p
ppp QQIQQ                                                  (4.9) 

• Improve pQ~  by application of a few times the iterative smoother (the same as equation 4.4)  to get 

pQ  
                
We can call the above two-grid V cycle recursively for p-1 and p-2 levels just behind the smoother (equation 4.8) 
to accomplish a three-level V cycle.  In fact, if it is called twice, a W cycle is constructed. 
                         
Note that only implicit LU-SGS smoothers are described in the above procedure for simplicity.  In practice, we 
can replace any of the implicit smoothers (4.4 or 4.8) with a three-stage or five-stage TVD Runge-Kutta scheme. 
If extension to 3D solver is considered, we intend to use the p2 level with an explicit scheme since its storage is 
small and implicit LU-SGS for the p1 and p0 levels. We define this as a mixed-smoother 3-level scheme.  In this 
paper, we also consider using explicit schemes as smoothers for all three levels. It is defined as an R-K smoother 
3-level scheme.    
 

5. Numerical results and discussion 
 
5.1 Validation using 2D linear scalar conservation law 
 
We consider the linear straight wave over a square domain. It is also considered in [5] using the explicit scheme. 
The equation can be described as  
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The computational unstructured grid with 40x40x2 elements is used as shown in figure 3(a). Analytical 
solutions are specified at the left and bottom boundaries. Figure 3(b) shows the converged solution obtained 
using the normal implicit scheme on the same grid. Figure 4 demonstrates that the converging speed of the 

simplified implicit scheme without 
t

Qc

Δ
Δ *

 term in equation (3.8) is about seven times as fast as the one of the 

explicit scheme, while the normal implicit scheme converging speed is only twice as fast as the explicit scheme.  

  
(a) 

 
(b) 

 
 
Figure 3: 2D Linear wave equation case. (a): Grid 40x40x2; (b): Contour Plot 
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Figure 4. Comparison of convergence history with respect to time using explicit R-K and implicit LU-SGS 
schemes for the 2D linear wave case 

 
 

5.2 Results for the Euler equations 
 
The Jacobian D matrix for the Euler equations is bigger than the scalar equations, since we have four 
conservative variables at each unknown point.  For example, D is a 24x24 matrix for a third order SD 
formulation of the 2D Euler equation.  The D matrix is frozen every 4 Multigrid cycles. The D matrix is frozen 
for around 20 Multigrid cycles when the steady residual drops to below 4105 −× . The Roe flux is used for the 
flux vector computation at the element boundary interfaces. A quadratic curved boundary condition is adopted 
[27] for non-straight wall boundary surfaces.   
 
A. 2D subsonic flow over a bump 
 
 We chose a testing case of the subsonic flow over a bump at Mach=0.5.  This case has been used by p-
Multigrid method for DG formulations of Euler equations in [19, 15].  A 10% thick circular bump is mounted 
on the center of the channel bottom. The length of the channel is 3, its height 1, and its width 0.5. The 
computational grid with 3140 elements is shown in figure 5(a).  The circular surface of the bump needs a 
higher-order boundary treatment and a quadratic boundary as described in [27] is adopted. 
 
 Figure 5(b) shows the pressure contour obtained by the three-level p-Multigrid method. It is approximately 
identical to the pressure contour shown in [15]. The maximum CFL number used for all the implicit 
computations is around 8.  Figure 6 shows the residual convergence history of the implicit schemes and the 
explicit scheme on a single grid is also shown. Driving normalized residuals to 8101 −× , the speedup obtained 
by the two-level p-Multigrid method is around 1.6 compared to the single level implicit scheme. The three-level 
p-Multigrid method accelerates the convergence further and the speed is 3.5 times as fast as the single level 
implicit method. The overall speedup i.e. the speedup attained by the three-level p-Multigrid is of two order 
compared to the explicit scheme on a single grid. Note that all the Multigrid methods mentioned so far is based 
on V cycles for this particular case.  
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(a) 
 

 
(b) 
 
Figure 5. Subsonic flow over a bump confined in a channel. (a): Computational grid. (b): Computed pressure 
contours. 
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Figure 6. Comparison of convergence history with respect to time for the bump testing case 
using explicit R-K and implicit LU-SGS schemes. 
 
As far as the implicit smoothers are considered for all three p-levels, we also examined the difference between V 
cycles and W cycles for the three-level p-Multigrid method. As expected, the current case requires lesser W 
cycles than V cycles to converge to machine zero as shown in figure 7(a).  However the total time consumed is 
lesser when the V cycles were employed. This is shown in fig 7(b). Note that, the number of iterative smoothers 
performed for V cycles is 1-1-20-1-1 for p2-p1-p0-p1-p2 levels respectively.  A bigger number of total p1- and 
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p0- level iterative smoothers is used in the W cycles, i.e., one, one and 16 iterations for p2, p1 and p0 levels 
respectively.    
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Figure 7. 2D subsonic flow over a bump case using implicit LU-SGS smoother. (a): Convergence history as a 
function of Multigrid cycles. (b): Convergence History as a function of time. 
 
It is known that Full Multigrid scheme (starting from the coarsest grid level) is a good choice when the initial 
guess is very bad. Figure 8 shows the convergence history with respect to time for a FMG implemented using V 
cycles. The scheme starts the computation from the p0 level and the normalized residual drops nearly two 
orders. It takes about 50 iterations to realize the above situation. The solution is then extrapolated to the p1 level 
using the standard prolongation operator. This prolongation results in a jump, which can be seen in fig 8. A two-
level scheme is used to drop the residual by an order. It takes about 25 iterations to realize the above. The 
solution is then extrapolated to the p2 level. As expected, a second jump occurs due to the extrapolation. It 
should be noted that the CPU time consumed by the above mentioned pre-processing computations on p0 and 
p1 levels is pretty short (70 seconds for this particular case). The three-level solver is now used to further drive 
the errors out of the domain. It can be seen that the time taken for the pre-processor takes only about a tenth of 
the total time. It is noted that all the subsequent figures for the Full Multigrid schemes (either implicit or 
explicit) show convergence histories directly from the p2 level because the CPU time spent on the pre-
processing computations is short. 
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Figure 8. Plot of convergence history with respect to time, showing the time taken for the single, two and three 
levels of the multigrid for the bump case 
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All the above Multigrid calculations for the bump case are using implicit smoothers. If the explicit smoothers 
are used for all three p-levels (figure 9) in which we use one-one-six-one-one-iteration explicit smoothers at the 
p2-p1-p0-p1-p2 levels to form a standard V cycle, a speedup of 8 is attained over the explicit single level case. 
Note that the three-level implicit scheme is only around 3.5 times as fast as the implicit scheme on a single grid. 
As expected, the 3-level explicit scheme is slower than the mixed scheme (1 R-K + 2 LU-SGS). The curve with 
the second fastest convergence rate in figure 9 is obtained using a calculation employing explicit smoothers only 
for the p2 levels and implicit smoothers for both p1 and p0 levels. The 3 level FMG LU-SGS is also plotted and 
it is much faster than any of the above discussed methods. 
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Figure 9. Comparison of convergence history with respect to time using combinations of explicit R-K and 
implicit LU-SGS schemes for the bump testing case 
 
B. Subsonic flow over a NACA0012 airfoil 
 
 The final testing case of the Euler equations is the subsonic flow over a NACA0012 airfoil at Mach=0.4 and 
angle of attack of zero degree. The computational grid is shown in figure 10. The outer boundary is 20 chords 
away from the airfoil centre. Figure 11 shows pressure contours obtained using two-level p-Multigrid scheme on 
p2 and p1 levels. The maximum CFL number used for the implicit computations is around 6.5. The explicit 
scheme limits the maximum CFL number to 0.06. From figure 12, we can see that the highest speedup factor 
obtained using the three-level p-Multigrid is again around 100 compared with the explicit scheme on the p2 grid. 
The three-level p-Multigrid method with implicit smoothers is about 4 times as fast as the single p2-level 
implicit method. The two-grid scheme using the implicit smoothers for p2 and p1 levels shows a fast 
convergence too. As also shown in figure 12, its speedup is around 70 compared to the single level explicit 
scheme.   

 
 
Figure 10: Grid(72*24*2) used for the subsonic flow over the NACA 0012 airfoil 
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Figure 11: Pressure Contours obtained for the subsonic flow over the NACA 0012 airfoil 
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Figure 12: Comparison of convergence history with respect to time for the airfoil testing case using explicit R-K 
and implicit LU-SGS schemes 
 
The effect of the explicit smoothers is also studied as shown in figure 13. Full Multigrid approach is used for the 
three level calculations.  The first calculation (3-level R-K) uses explicit smoothers for all p-levels. One-one-six-
one-one-iteration explicit smoothers are employed for p2-p1-p0-p1-p2 levels to form a big V cycle. The second 
calculation is defined as a mixed three-level approach since it employs explicit smoothers only for the p2 level. 
For stability reason, we use around 30 iterations of explicit smoother at the p2 level to smooth out the 
prolongation noises generated by the implicit smoothers of 6 iterations on the p0 level and a single iteration on 
the p1 level. The mixed 3-level approach is about 1.4 times as fast as the approach of 3-level R-K. The 3-level 
R-K approach is around 8 times as fast as the single level explicit R-K method to reach residual level of 6101 −× . 
As expected, the 3-level p-Multigrid method using implicit smoothers is much faster than any of the above 
discussed schemes. 
 
For the above computations performed for the airfoil case, the iteration numbers for the V cycles shall be 
pointed out as follows. For three-level p-Multigrid method using implicit smoothers, two iterations are sufficient 
for the p2 and p1 levels and as many as 20 iterations can be used on the p0 level during every V cycle. In short, 
2-2-20-2-2 iterations of smoothers are employed on p2-p1-p0-p1-p2 levels. For the two-level p-Multigrid 
method, a smaller V-cycle is constructed using one relaxation iteration at the p2 level, two relaxation iterations 
at the p1 level and two more smoothing iterations at the p2 level to remove the prolongation noise. 
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Figure 13: Comparison of convergence history with respect to time using combinations of explicit R-K and 
implicit LU-SGS schemes for the airfoil testing case 
 

6. Conclusions 
 
We have developed a p-multigrid spectral difference solver for the 2D Euler equations with a preconditioned 
LU-SGS smoother. We found that the simplified implicit scheme is very stable and produces a speedup around 
one order for the scalar equation compared to the explicit scheme. In fact, the speedup obtained by the implicit 
scheme with p = 2 is around 20-50 for the Euler equations. The computational speed is further accelerated by a 
nonlinear p-multigrid approach in the context of Full Approximation Scheme. The combination of the implicit 
LU-SGS relaxation scheme with three-level p-multigrid method achieves very good stability and speedup for 
both 2D wave and 2D Euler equations. The p-Multigrid method with the implicit smoother on all three p-levels 
achieves a speedup of around 4 over the single level implicit scheme. Explicit Runge-Kutta smoothers are also 
studied for the p-Multigrid method. They are not as effective as implicit LU-SGS. However, they can be used at 
the highest p-level for 3D problems to circumvent the problems associated with large storage of the cell 
Jacobian matrix in implicit schemes. Our calculations of 2D flows demonstrate that the approaches using 
explicit smoother at the high p-levels and implicit smoother at the low p-levels are stable and achieve 
considerable speedup.  Nevertheless, a speedup factor around 8 can be achieved using explicit smoothers for all 
three p-levels. In the future, we are planning to extend the p-multigrid method with implicit LU-SGS smoothers 
to 2D and 3D compressible Navier-Stokes equations.  
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