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An efficient implementation of the high-order spectral volume (SV) method is presented 
for multidimensional conservation laws on unstructured grids.  In the SV method, each 
simplex grid cell is called a spectral volume (SV), and the SV is further subdivided into 
polygonal (2D), or polyhedral (3D) control volumes (CVs) to support high-order data 
reconstructions. In the traditional implementation, Gauss quadrature formulas are used to 
approximate the flux integrals on all faces. In the new approach, a near optimal nodal set is 
selected and used to reconstruct a high-order polynomial approximation for the flux vector, 
and then the flux integrals on the internal faces are computed analytically, without the need 
for Gauss quadrature formulas. This gives a great advantage over the traditional SV method 
in efficiency and ease of implementation. For SV interfaces, a quadrature free approach is 
compared with the Gauss quadrature approach to further evaluate the accuracy and 
efficiency. A simplified treatment of curved boundaries is also presented that avoids the need 
to store a separate reconstruction for each boundary cell. Fundamental properties of the 
new SV implementation are studied and high-order accuracy is demonstrated for linear and 
nonlinear advection equations, and the Euler equations.  Several well-known inviscid flow 
test cases are utilized to show the effectiveness of the simplified curved boundary 
representation.    

I.     Introduction 
he spectral volume (SV) method is a recently developed finite volume method for hyperbolic conservation laws 
on  unstructured grids.1-6 The SV method belongs to a general class of Godunov-type finite volume method7-8, 

which has been under development for several decades, and is considered to be the current state-of-the-art for the 
numerical solution of hyperbolic conservation laws. For a more detailed review of the literature on the Godunov-
type method, refer to Wang1, and the references therein. Many of the most popular numerical methods, such as the 
k-exact finite volume9-10, the essentially non-oscillatory (ENO)11-12, and weighted ENO13 methods are also 
Godunov-type methods. The SV method is also closely related to the discontinuous Galerkin (DG)14-17 method, a 
popular finite-element method for conservation laws. Both the SV and DG methods employ multiple degrees of 
freedom within a single element, but the SV method avoids the volume integral required in the DG method. Each 
simplex in the SV method utilizes a “structured” set of sub-cells, thus resulting in more cell faces where Riemann 
problems must be solved; however this inherent property of sub-cell resolution gives the SV method the ability to 
capture discontinuities with higher resolution than the DG method. For a more thorough comparison of the SV and 
DG methods, refer to Wang.1   
 The aforementioned additional cell faces present in the SV method number in the dozens per SV for 2D and in 
the hundreds per SV for 3D. In the traditional implementation of the SV method, all face integrals are computed by 
means of Gauss quadrature formulas, which are appropriate to the shape and dimension of the face. For example, a 
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pentagonal face existing in the partition of a tetrahedral SV (3D) is split into 3 triangles. To carry out the integration, 
a Gauss quadrature formula of appropriate precision is then employed for each triangle. This procedure can be very 
efficient in 2D, where the required Gauss quadrature points number in the dozens per SV. However in 3D, the 
partition of a tetrahedron can be so complicated that thousands of Gauss quadrature points per SV may be necessary 
to compute the face integrals to the desired precision.   
 In this paper, we present two different approaches to handle the face integrals more efficiently. In each approach, 
a nodal set is defined within each SV to support a polynomial reconstruction for the flux vector. The shape functions 
defined by this nodal set are then integrated analytically over a standard element, resulting in an analytical 
representation for the flux integral on all faces. This reconstruction is universal for all SVs if a nodal set is 
distributed in a geometrically similar manner for all SVs. The first approach employs the above methodology for the 
internal faces only, while using the Gauss quadrature formulas for faces bounding an SV. This approach will be 
referred to as the partial quadrature (PQ) approach. The second approach employs the above methodology for all 
faces, and is thus referred to as the quadrature free (QF) approach. Both approaches are shown to be stable and 
convergent.  
 It is well known that high-order methods are very sensitive to the treatment of curved wall boundaries. It has 
been shown recently18 that in the high-order SV method, unless care is taken to represent curved boundaries with 
high-fidelity, the solution accuracy may be reduced to low-order. The customary approach is to introduce higher 
order elements for cells on curved wall boundaries. This approach has been shown to produce desired results18, but 
this necessitates storage of a separate reconstruction for each cell bounding a curved wall. For large problems, and 
especially in 3D, the memory requirement for this approach may be large. Recently, Krivodonova and Berger19, and 
Luo et al.32 have presented a simplified treatment for curved boundaries which utilizes a high-order approximation of 
the normal vector to the physical rather than computational geometry. This eliminates the need to store a separate 
reconstruction for wall boundary cells. We implement a similar technique in this paper, while maintaining the 
conservative property.      
 The paper is organized as follows. In Section 2, we review the basic formulation of the SV method. After that, 
the partial quadrature (PQ) and quadrature free (QF) approaches are described in detail in Section 3. Section 4 
outlines the methodology for a simplified curved boundary representation. Numerical results including accuracy 
studies for linear and nonlinear advection, as well as the Euler equations are presented in Section 5. In addition, 
computations of inviscid flows over a circular cylinder, and a NACA 0012 airfoil are carried out to demonstrate the 
effectiveness of the curved boundary representation. Finally, conclusions and some possibilities for future work are 
summarized in Section 6. 

II. Review of the Basic Spectral Volume Method 
 Consider the multidimensional conservation law 
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on domain Ω × [0,T] and 3R⊂Ω with the initial condition  
                                                                                  ),,,()0,,,( 0 zyxQzyxQ =                                                                (1b) 
and appropriate boundary conditions on ∂Ω. In (1), x,y, and z are the Cartesian coordinates and (x,y,z)∈  Ω, t ∈  [0,T] 
denotes time, Q is the vector of conserved variables, and f, g and h are the fluxes in the x, y and z directions, 
respectively. Domain Ω is discretized into I nonoverlapping triangular (2D), or tetrahedral (3D) cells. In the SV 
method, the simplex grid cells are called SVs, denoted Si, which are further partitioned into CVs, denoted Ci,j, which 
depend on the degree of the polynomial reconstruction. Examples of partitions supporting quadratic and cubic 
reconstructions are shown in Figure 1 (2D), and in Figure 2 (3D). Volume-averaged conserved variables on the CVs 
are then used to reconstruct a high-order polynomial inside the SV. To represent the solution as a polynomial of 
degree m, we need N pieces of independent information, or degrees of freedom (DOFs). Where N is calculated as 
follows: 
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where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-averaged conserved 
variables at the N CVs. Define the CV-averaged conserved variable for Ci,j as 
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where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, a polynomial pi(x,y,z) 
∈  Pm (the space of polynomials of at most degree m) can be reconstructed such that it is a (m+1)th order accurate 
approximation to Q(x,y,z) inside Si. 
                                                  ( ) ( ) ( )1,,,, ++= m

i hOzyxQzyxp ,     ( ) iSzyx ∈,, ,     i=1,…,I,                                          (4) 
where h is the maximum edge length of all the CVs. This reconstruction can be solved analytically by satisfying the 
following conditions: 
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This polynomial pi(x,y,z) is the (m+1)th order approximation we are looking for as long as the solution Q(x,y,z) is 
smooth in the region covered by Si. The reconstruction is expressed more conveniently as 
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where Lj(x,y,z) ∈  Pm  are the shape functions which satisfy 
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Integrating (1) in Ci,j, we obtain 
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where  F= (f,g,h), Ar  represents the rth face of Ci,j , n̂  is the outward unit normal vector of Ar, and K is the number of 
faces in Ci,j. More details of this, including representative plots of the shape functions can be found in Wang and 
Liu.2 If F is a nonlinear function of the conserved variables, then the surface integration on each face is performed 
with a (m+1)th-order-accurate Gauss quadrature formula; i.e.,  
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where J=integer[(m+2)/2] is the number of quadrature points on the rth face in 2D, wrq are the Gauss quadrature 
weights, F̂ is a numerical flux, and (xrq,yrq,zrq) are the Gauss quadrature points. For time integration, we use the 
third-order TVD Runge-Kutta scheme.24  
 
 
             

                                                                             
                                                   (a)                                                                                     (b) 

Figure 1. Partitions of a triangular SV supporting quadratic and cubic data reconstructions, shown in (a) and 
(b), respectively. 
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                                         (a)                                                                                       (b) 

Figure 2. Partitions of a tetrahedral SV supporting quadratic and cubic data reconstructions, shown in (a) 
and (b), respectively. 

III.     Formulation of the Quadrature-Free Approach 
 
     In the new approach, a near optimal nodal set, such as those shown in Figure 3, is selected from Hesthaven.21-22 

This nodal set is then used to reconstruct a high-order polynomial approximation for the flux vector, and then the 
flux integrals are computed analytically, without the need for Gauss quadrature formulas. If we assume Q, f, g and h 
to be all polynomials in (1), obviously f, g and h should be one degree higher than Q. Therefore, a polynomial of 
degree m+1 is employed to reconstruct the flux vector. 
 

                   
                                                (a)                                                                                  (b) 

Figure 3. Nodal sets in a triangular SV supporting cubic and quartic data reconstructions for the flux vector, 
shown in (a) and (b), respectively. 

The flux vector F can be computed at any point (x, y, z) by the following  
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where Ns is the number of nodes in the nodal set, calculated from (2), Fi is the flux vector evaluated at node i , and 
Mi(x,y,z) are the shape functions defined by the nodal set which satisfy: 
                                                                                ( ) .,, jnjjjn zyxM δ=                                                                    (11)  
Some representative 2D examples of the shape functions are shown in Figures 4 and 5.  
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Figure 4. Shape functions in a triangular SV supporting a cubic data reconstruction for the flux vector. The 
node which each function corresponds to is shown in bold.   
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Figure 5. Shape functions in a triangular SV supporting a quartic data reconstruction for the flux vector. The 
node which each function corresponds to is shown in bold.   

 
 In the PQ approach, (10) is integrated over each internal face, resulting in an analytical representation for the 
flux integral on all internal faces. This is done using a program capable of symbolic calculus, such as Mathematica.25  
This allows for the flux integral on each internal face to be computed as a weighted average of the flux evaluated at 
the nodal set. The face integrals on SV-bounding faces are then computed from (9), via the traditional approach. In 
the QF approach, the face integrals on internal faces are evaluated as in the PQ approach, but the SV-bounding faces 
require some care.  Here, (6) and (10) are integrated over each SV-bounding CV face, and the resulting face integral 
can be expressed as the integral of a Riemann flux as follows: 
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where LnF ,  and RnF ,  denote the face-averaged normal component of the flux vector due to the SV to the left and 
right of the interface, respectively, and αc is taken as the maximum absolute eigenvalue as in the Rusanov Flux26, 
which is evaluated at the face center. RQ and LQ are the face-averaged conserved variables due to the SV to the 
right and left of the interface, respectively. Eq. (12) can be deduced from the following. Since 

( ) ( ) ( )1,,,, ++= m
i hOzyxQzyxp , the following is also true,  

                                                                                    

( )
( )

( ),
,

,

1

1

1

+

+

+

=−

=−

=−

m
LR

m
L

m
R

hOQQ

hOQQ

hOQQ

                                                               (13a) 

and the maximum absolute eigenvalue α  ~ O(1), so we can say that 
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Integrating (13b) over a face, we obtain 
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At each node shown in Figure 3, the flux is computed based on the reconstructed solution polynomial. Therefore, the 
flux error at each node of the nodal set is of order O(hm+1), i.e., 
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where Fn is the (unknown) “exact” normal flux at the face. Integrating the 3rd equation in (15) over a face, we obtain  
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So, the surface integral in (8) can be expressed by adding together (14) and (16) to get 
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If F=constant, the following identity exists: 
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Therefore, we will gain an extra order of accuracy if we sum up the surface integrals for the faces of Ci,j; i.e.,  
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Since O(Vi,j) = O(Ar h), we have  
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Thus, if the surface integral in (8) is evaluated using (12), spatial accuracy of order m+1 is assured.  
 To summarize, the first and second terms in (12) are computed as a weighted average of the flux evaluated at 
the nodal set of the left, and right SV, respectively, and the third and fourth terms are computed as a weighted 
average of the cell-averaged conserved variables of the right and left SV, respectively. In practice, face-averaged 
shape functions are computed during preprocessing for a standard element and then multiplied by the physical face 
area for computation. This eliminates the need to store all of the Jacobians. 
 In a quick comparison of the approaches, a 2D 3rd order SV method using the traditional “full quadrature” 
approach with 2 quadrature points per face necessitates 36 flux calculations per SV, the PQ approach requires 28 
flux calculations per SV, and the QF approach requires only 10 flux calculations per SV. Similarly, for a 4th order 
SV method, the number of flux calculations per SV are 54, 39, and 15 for the “full quadrature”, PQ, and QF 
approaches, respectively. So, the PQ and QF approaches are slightly more efficient than the “full quadrature” 
approach in 2D, but are much less costly to evaluate in 3D where the faces number in the hundreds.  

IV.     Formulation of Curved Boundary Representation 
 One of the biggest advantages of high-order methods over low-order methods is their ability to achieve better 

solution accuracy using far fewer degrees-of-freedom. However, for problems involving curved wall boundaries 
which are represented by line-segments or planar-facets, an inordinate amount of elements may be necessary just to 
preserve the geometry with adequate precision. A much more desirable approach is to represent curved boundaries 
with high-order polynomials that are compatible with the order of the data reconstruction. Favorable results have 
been obtained18 when applying this technique to the SV method. One drawback of this approach is that it 
necessitates computation and storage of a separate reconstruction for each and every wall-bounding cell. For large 
problems, and especially in 3D, the memory requirement can become large. Here we advocate an approach in which 
the geometry is represented with high fidelity, but a separate reconstruction for every wall-bounding cell is avoided. 
Similar approaches have been recently presented by Krivodonova and Berger19, and Luo et al.32 The basic idea 
employed here is that the flux integrals are carried out on the physically curved faces using the polynomial 
reconstruction from a linear SV, as opposed to a curved SV. This allows us to employ the same reconstruction for 
the SVs on curved boundaries that is already in use for all other SVs. Since the curvature will usually be very small, 
this is a reasonable approximation. 

 This procedure involves a number of steps. First, a set of points must be defined for each SV face that will be 
used to construct a polynomial representation for that face. Wang and Liu18 showed that a quadratic boundary 
representation is sufficient for both 3rd and 4th order simulations, so a quadratic boundary is also utilized in this 
study. Thus, 3 points are needed to define a quadratic polynomial for each SV face in 2D. Two of the points are 
taken as the SV face endpoints, while the 3rd is computed from a cubic polynomial fit between the SV face endpoints 
and the opposite endpoints of both neighboring SV faces. If the SV face in question is at the end of the curved wall, 
or at a sharp trailing edge, then the 3rd point is computed from a quadratic fit between the two SV face endpoints and 
the opposite endpoint of the adjacent SV face. A schematic of this arrangement is shown in Figure 6 for clarity.    
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                                                         (a)                                                                              (b) 

Figure 6. Stencil for computation of 3rd point for quadratic polynomial: (a) 4 points used to fit cubic 
polynomial; (b) 3 points used to fit quadratic polynomial. 

Following the usual practice18, isoparametric SVs can be used to map SVs with curved boundaries into the standard 
SV. Assume that a one-to-one transformation exists between a general SV in the physical space (x, y) and the 
standard triangle in the computational domain (ξ, η) as shown in Figure 7, i.e.,  
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The partition of the SV is performed in the standard triangle, and the partition in the physical domain is the result of 
the inverse transformation from the computational domain back to the physical domain as shown in Figure 8.                   

                                                                                        
( )
( ).,

,,
ηξ
ηξ

yy
xx

=
=

                                                                          (22)    

Therefore, a necessary condition for a valid transformation is that the inverse transformation exists.  
                                               

 

 

     

 

   

 

Figure 7. Transformation of a general SV in the physical domain to the standard triangle in the 
computational domain. 

                                              

 

 

 

 

 

Figure 8. Transformation of the partition from the standard triangle in the computational domain to the 
general SV in the physical domain. 

In the most general case, a quadratic isoparametric SV requires the specification of 6 nodes, as shown in Figure 9a. 
The transformation can be expressed as 

                                                                                  ( ) ,,
1

j

m

j
j rCr ηξ∑

=

=                                                                      (23) 

where r=(x, y). The shape functions for a quadratic SV in 2D can be written as 
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In most cases, however, it is not necessary to use the most general isoparametric SV since only one boundary of the 
SV is usually curved as shown in Figure 9b. As a result, simplified curved SVs (SCSV) can be used. The shape 
functions for the quadratic SCSV can be easily found to be 
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Since we are not computing a new reconstruction based on the isoparametric SVs, the purpose of this transformation 
is to modify the SVs such that the endpoints of the faces of wall-bounding CVs lie on the curved SV face. This is 
shown in Figure 10 for clarity. The node locations and face endpoints are computed using (23) and (25), and the face 
endpoints are all connected with straight lines. Although the CV faces themselves remain linear, with the CV face 
endpoints situated on the curved SV face, the flux integration can be carried out along the curved face and still 
satisfy conservation. Since the reconstruction is only universal for geometrically similar partitions and node 
distributions, there is some error inherent to the geometrical dissimilarity of the SVs on curved wall boundaries. In 
most situations, the SVs on curved wall boundaries will be small compared to all other SVs, and accordingly the 
degree of nonlinearity of these SV faces will also be small. It is thus reasoned that any error introduced in the 
reconstruction due to the presence of geometrically dissimilar SVs on curved wall boundaries will likely be small. 

                                                           
                                                                  (a)                                                       (b) 

Figure 9. Quadratic (a) and simplified quadratic (b) SVs with three and one curved boundaries, respectively. 

 
 
 
 
 
 
 

 

Figure 10. Traditional SV partition transformed to accommodate curved-wall boundary. 

Let the equation of the rth wall-bounding face of Ci,j in the standard SV be  
                                                                                 ,0=η     .21 rr ξξξ <<                                                              (26) 
Then the surface integral in (8) can be written as 



 
American Institute of Aeronautics and Astronautics 

 
 

10

                                                                        ( ) .,ˆ
2

1

ξ
ξξ

ξ

ξ

d
d
dx

d
dyFdAnF

r

rrA
∫∫ 








−⋅=⋅                                                      (27) 

This line integral in the standard element can be evaluated using the standard Gauss quadrature formula 
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where wrq represent the Gauss quadrature weights, and 
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vector with the area normal vector. To preserve a uniform free stream (Q = constant), the surface integral must satisfy 
the following identity 
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It is obvious that the unit normal vectors for the curved face are polynomials one order lower than the transformation 
polynomials (22). Therefore, a one-point Gauss formula is sufficient to preserve a free stream for a quadratic 
boundary representation. If the flux function is of the same order polynomial as the solution, more quadrature points 
are required to exactly integrate the flux over curved boundaries. Here, a two-point Gauss formula is employed for 
all cases. 

V.     Numerical Tests 
 In this section, the efficient SV implementation is evaluated for 2D scalar advection equations, and for the 2D 
Euler equations. Both 3rd-order and 4th-order partitions are evaluated. The 3rd-order partition, and the corresponding 
nodal set to support a cubic reconstruction for the flux vector are shown in Figures 1a, and 3a, respectively. The 4th-
order partition, and the corresponding nodal set to support a quartic reconstruction for the flux vector are shown in 
Figures 1b, and 3b, respectively. The numerical error is assessed using both regular and irregular grids, as shown in 
Figure 11. The finer grids are generated recursively by cutting each courser grid cell into four finer grid cells. The 
third-order TVD Runge-Kutta scheme is used for time integration in all cases. Also, all errors presented are time-
step independent because the time step t∆  was made small enough so that the errors are dominated by the spatial 
discretization. The initial CV-averaged solutions were computed using the CV-averaged node-based shape 
functions. In this way, the solution is initialized at the nodal set, and the CV-averaged solutions are computed as a 
weighted average of these nodal values. This avoids the need for a high-order Gauss quadrature initialization. The 
solution is taken as converged when the L2 norm of the residual is reduced by 8 orders of magnitude in all cases. The 
L2 norm of the density residual is used for the Euler equation simulations.  
 
                            

                                              

 

 

 

 

 

 

 

       

     (a)                                                                                  (b) 

Figure 11. Regular and irregular grids for validation cases: (a) regular (10x10x2); (b) irregular (10x10x2). 
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A.  Accuracy study with linear advection equation 
 
 In this case, we test the accuracy of the SV method on the 2D linear advection equation: 
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                                                        )(sin)0,,( yxyxQ += π ,  periodic boundary condition. 
The numerical solutions were carried out until t=1s for this time-accurate problem. In tables I-II, we present the L1  
and L∞ errors and orders for regular and irregular grids, respectively. Grid refinement is carried out until both the   
L1 and L∞ orders are sufficiently demonstrated. For this case, the PQ results are identical to the QF results, as 
expected for a linear equation, so just the QF results are presented. The formal order of accuracy is observed, using 
both regular and irregular grids. 
 

Table I 
Accuracy of 2D linear advection equation at t=1 s on regular grids 

 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                3 10 x 10 x 2 1.33e-3 -                    3.29e-3 -  

                                        20 x 20 x 2           1.73e-4          2.94               4.47e-4           2.88 
                                        40 x 40 x 2           2.19e-5          2.98                5.77e-5           2.95 
                                        80 x 80 x 2           2.76e-6          2.99               7.29e-6           2.98 
 

                4                                    10 x 10 x 2           7.10e-5           -                    2.44e-4           - 
                                        20 x 20 x 2            4.38e-6          4.02               1.56e-5           3.97 
                                        40 x 40 x 2           2.73e-7          4.00                9.78e-7           3.99 
                                        80 x 80 x 2           1.71e-8          4.00               6.12e-8           4.00 

 
            
 

Table II 
Accuracy of 2D linear advection equation at t=1 s, on irregular grids 

 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                3 10 x 10 x 2 3.12e-3 -                    1.57e-2 -  

                                        20 x 20 x 2           4.09e-4          2.93               1.93e-3           3.02 
                                        40 x 40 x 2           5.36e-5          2.93                3.37e-4           2.52 
                                        80 x 80 x 2           6.99e-6          2.94               6.18e-5           2.45 
 

                4                                    10 x 10 x 2           2.62e-4           -                    1.50e-3           - 
                                        20 x 20 x 2            1.56e-5          4.07               1.13e-4           3.73 
                                        40 x 40 x 2           9.67e-7          4.02                8.23e-6           3.77 
                                        80 x 80 x 2           6.03e-8          4.00               5.38e-7           3.94 

 
            

B.  Accuracy study with Burgers equation 
 
 In this case, we test the accuracy of the SV method on the 2D Burgers equation: 

                                                02/2/ 22
=

∂
∂

+
∂

∂
+

∂
∂

y
Q

x
Q

t
Q ,           11 ≤≤− x ,            ,11 ≤≤− y                                 (31) 

                                                 )(sin
2
1

4
1)0,,( yxyxQ ++= π ,  periodic boundary condition. 

The numerical solutions were carried out until t=0.1s for this time-accurate problem. At this time the solution is still 
smooth, so data limiting is not necessary. In tables III-IV, we present the L1 and L∞  errors and orders for regular and 
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irregular grids, respectively. Grid refinement is carried out until both the L1 and L∞ orders are sufficiently 
demonstrated. Results from the PQ and QF approaches are not identical for this case, but they are very similar, so 
again only the QF results are shown. The formal order of accuracy is again observed, using both regular and 
irregular grids. 
 

Table III 
Accuracy of 2D Burgers equation at t=0.1 s on regular grids 

 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2      3.96e-4 - 1.63e-3 -  
          20 x 20 x 2 6.49e-5         2.61 3.97e-4           2.03 
 40 x 40 x 2  1.03e-5         2.66  7.01e-5        2.50 
 80 x 80 x 2 1.55e-6         2.73 1.12e-5           2.65 
 
                 4 10 x 10 x 2      3.28e-5 - 3.77e-4  - 
          20 x 20 x 2 2.39e-6         3.78 3.26e-5           3.53 
 40 x 40 x 2  1.74e-7         3.77  2.89e-6           3.49 
 80 x 80 x 2 1.23e-8         3.83 2.08e-7           3.80 
 
 

Table IV 
Accuracy of 2D Burgers equation at t=0.1 s on irregular grids 

 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2      6.42e-4 - 3.35e-3  - 
          20 x 20 x 2 1.17e-4         2.45 9.96e-4           1.75 
 40 x 40 x 2  1.88e-5         2.65  2.66e-4           1.90 
 80 x 80 x 2 2.91e-6         2.69 6.12e-5           2.12 
 160 x 160 x 2 4.41e-7         2.72 1.14e-5           2.43 
 320 x 320 x 2    6.51e-8         2.76 1.88e-6           2.59 
 
                 4 10 x 10 x 2      8.35e-5 - 1.16e-3 -  
          20 x 20 x 2 6.20e-6         3.75 1.43e-4           3.02 
 40 x 40 x 2  4.57e-7         3.76  1.26e-5           3.51 
 80 x 80 x 2 3.28e-8         3.80 1.06e-6           3.56 
 

            
C. Accuracy study with vortex propagation problem 

 
 The unsteady 2D Euler equations in conservative form can be written as 

                                                                          0=
∂
∂

+
∂
∂

+
∂
∂

y
G

x
F

t
Q  ,                                                               (32a) 

where Q is the vector of conserved variables, F and G are the inviscid flux vectors given below: 
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Here ρ is the density, u and v are the velocity components in x and y directions, p is the pressure, and E is the total 
energy. The pressure is related to the total energy by  

                                                                            ( )22

2
1

1
vupE ++

−
= ρ

γ
 ,                                                           (32c) 
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with ratio of specific heats γ . In all of the simulations in this paper, γ is taken to be 1.4.  
 This is an idealized problem for the Euler equations in 2D. the mean flow is { }pvu ,,,ρ = { }1,1,1,1 . An isotropic 
vortex is then added to the mean flow, i.e. with perturbations in u, v, and temperature T = p/ρ, and no perturbation in 
entropy S=p/ργ: 

( ) ( )( )xyevu r ,
2

,
215.0 −= −

π
εδδ , 

( ) 21
2

2

8
1 reT −−

−=
γπ

εγδ , 

 0=Sδ , 
where 222 yxr += , 5−= xx , 5−= yy , and the vortex strength ε = 5. If the computational domain extends to 
infinity, the exact solution of the Euler equations with the above initial conditions is just the passive convection of 
the isotropic vortex with mean velocity (1, 1). In the following accuracy study, the computational domain is taken to 
be [0, 10] x [0, 10], with characteristic inflow and outflow boundary conditions imposed on the boundaries. 
 The numerical solution is carried out until t = 2 on both regular and irregular grids. No limiters are employed in 
this study since the problem is smooth, and the Rusavov flux is used in all simulations. In tables V-VI, we present  
 

Table V 
Accuracy of 2D vortex propagation problem at t=2 s on regular grids using PQ approach 

 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2 1.41e-03 - 4.09e-02 - 
 20 x 20 x 2 2.51e-04 2.49 4.88e-03 3.06 
 40 x 40 x 2 4.30e-05 2.54 1.05e-03 2.22 
 80 x 80 x 2  6.88e-06 2.65 1.95e-04 2.42 
 160 x 160 x 2 1.05e-06 2.71 3.16e-05 2.63 
 
                 4 10 x 10 x 2 6.08e-04 - 9.98e-03 - 
 20 x 20 x 2 4.95e-05 3.62 1.12e-03 3.16 
 40 x 40 x 2 3.03e-06 4.03 1.14e-04 3.30 
 80 x 80 x 2 1.92e-07 3.98 7.28e-06 3.96 
 160 x 160 x 2 1.36e-08 3.82 6.22e-07 3.55 
 

            
Table VI 

Accuracy of 2D vortex propagation problem at t=2 s on regular grids using QF approach 
 

              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2 1.34e-03 - 3.90e-02 - 
 20 x 20 x 2 2.50e-04 2.42 5.65e-03 2.79 
 40 x 40 x 2 4.28e-05 2.55 1.16e-03 2.29 
 80 x 80 x 2 6.70e-06 2.68 2.01e-04 2.52 
 160 x 160 x 2 1.01e-06 2.73 3.17e-05 2.67 
 
                 4 10 x 10 x 2 5.39e-04 - 9.33e-03 - 
 20 x 20 x 2 4.64e-05 3.54 9.14e-04 3.35 
 40 x 40 x 2 2.80e-06 4.05 8.74e-05 3.39 
 80 x 80 x 2 1.71e-07 4.03 5.25e-06 4.06 
 160 x 160 x 2 1.19e-08 3.85 4.78e-07 3.46 
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the L1 and L∞ errors and orders in the CV-averaged density for the regular grids using the PQ and QF approaches, 
respectively. Tables VII-VIII show the L1 and L∞ errors and orders for the irregular grids using the PQ and QF 
approaches, respectively. Comparison of the PQ and QF approaches for this case show very similar behavior. The 
formal order of accuracy is demonstrated for all cases.   

 
Table VII 

Accuracy of 2D vortex propagation problem at t=2 s on irregular grids using PQ approach 
 

              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2 1.11e-03 - 2.67e-02 - 
 20 x 20 x 2 1.85e-04 2.58 3.23e-03 3.04 
 40 x 40 x 2 3.00e-05 2.63 6.91e-04 2.23 
 80 x 80 x 2 4.76e-06 2.66 1.32e-04 2.39 
 160 x 160 x 2 7.36e-07 2.69 1.95e-05 2.75 
 
                 4 10 x 10 x 2 3.46e-04 - 8.38e-03 - 
 20 x 20 x 2 3.07e-05 3.49 4.52e-04 4.21 
 40 x 40 x 2 2.07e-06 3.89 4.87e-05 3.21 
 80 x 80 x 2 1.42e-07 3.87 3.89e-06 3.65 
 160 x 160 x 2 9.49e-09 3.90 3.66e-07 3.41 
 

            
Table VIII 

Accuracy of 2D vortex propagation problem at t=2 s on irregular grids using QF approach 
 
              Order of accuracy Grid        L1 error            L1 order L ∞  error   L ∞  order          
                 
                 3 10 x 10 x 2 1.05e-03 - 2.83e-02 - 
 20 x 20 x 2 1.86e-04 2.49 3.58e-03 2.98 
 40 x 40 x 2 3.01e-05 2.63 7.19e-04 2.32 
 80 x 80 x 2 4.67e-06 2.69 1.33e-04 2.44 
 160 x 160 x 2 7.15e-07 2.71 2.16e-05 2.62 
 
                 4 10 x 10 x 2 3.50e-04 - 6.34e-03 - 
 20 x 20 x 2 2.92e-05 3.58 4.40e-04 3.85 
 40 x 40 x 2 2.03e-06 3.85 4.50e-05 3.29 
 80 x 80 x 2 1.36e-07 3.90 3.98e-06 3.50 
 160 x 160 x 2 9.09e-09 3.91 4.29e-07 3.22 
 

            
D.  Subsonic flow over a circular cylinder 
 
 A subsonic inviscid flow around a circular cylinder at Mach = 0.3 is selected to test the new simplified curved 
boundary representation. Due to flow symmetry, only the top half of the physical domain is selected as the 
computational domain although the complete physical domain is displayed in all of the figures. The far field 
boundary is located 20 diameters away from the cylinder center and the characteristic inflow/outflow boundary 
conditions are used at the far field boundary. In order to perform a grid refinement accuracy study, four different 
triangular grids were generated from four structured grids with 16x4, 32x8 , 64x16 and 128x32 cells, which are 
shown in Figure 12. The solution is initialized to a uniform free stream. All simulations employ the simplified 
curved boundary treatment given in Section IV, and the PQ approach. The simulations were also run using a piece-
wise linear boundary representation, but the solution quickly diverged in all cases. Also, even with the curved 
boundary treatment, the Rusanov flux can become unstable due to spurious entropy production at the trailing edge. 
This is overcome by the use of either the Roe27, or HLLC28-31 flux. Both are convergent and yield similar results. 
The HLLC flux is advocated here because of its improved efficiency over the Roe flux.  
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                                             (a)                                                                       (b) 
 

            
                                        (c)                                                                       (d) 
 
Figure 12. Computational grids for flow over a circular cylinder. (a) 16x4x2 cells. (b) 32x8x2 cells. (c) 64x16x2 
cells. (d) 128x32x2 cells. 
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                                           (a)                                                                             (b) 
 

                 
                                           (c)                                                                             (d)  
 
Figure 13. Mach contours computed with 3rd order PQ approach using simplified curved boundary treatment 
on four different grids. (a) 16x4x2 cells. (b) 32x8x2 cells. (c) 64x16x2 cells. (d) 128x32x2 cells. 
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                                           (a)                                                                             (b) 
 

                 
                                           (c)                                                                             (d) 
 
Figure 14. Mach contours computed with 4th order PQ approach using simplified curved boundary treatment 
on four different grids. (a) 16x4x2 cells. (b) 32x8x2 cells. (c) 64x16x2 cells. (d) 128x32x2 cells. 
 
 Figures 13 and 14 show fourteen even contours of Mach number between 0 and 0.65. The coarse grids show 
some discontinuous contours and a numerical wake at the trailing edge. As the grid is refined, the contours become 
continuous and the flow becomes perfectly symmetric with respect to both axes.  
 
E.  Subsonic flow over a NACA 0012 airfoil 
 
 As a final demonstration for a more realistic geometry, subsonic flow around a NACA 0012 airfoil at Mach = 
0.4, and angle of attack of 5 degrees is simulated. In this simulation, the 3rd order SV scheme is tested using a very 
course mesh with 48x16x2 triangles, as shown in Figure 15, to further demonstrate the effectiveness of the curved 
boundary treatment. The outer boundary is 20 chords away from the center of the airfoil. This simulation was also 
carried out using a linear boundary representation. Thirty-three even pressure contours between 0.5 and 0.8 
computed using both a linear and quadratic boundary representation are shown in Figures 16a and 16b, respectively. 
Figures 17a and 17b show thirty-three even contours of Mach number between 0 and 0.8 using a linear and 
quadratic boundary representation, respectively. Spurious entropy production at the airfoil surface in the linear 
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boundary representation has caused the pressure and Mach contours to be heavily oscillatory. This effect is 
dramatically lessened when using a quadratic boundary representation as shown in Figures 16b and 17b.    
 

                                                     
Figure 15. Computational grid for flow over a NACA 0012 airfoil (48x16x2 cells). 

 

              
                                                  (a)                                                                                    (b) 

  
Figure 16. Pressure contours for 3rd-order PQ approach: (a) linear boundary; (b) quadratic boundary. 

 

              
                                                 (a)                                                                                    (b) 

 
Figure 17. Mach contours for 3rd-order PQ approach: (a) linear boundary; (b) quadratic boundary. 
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VI.   Conclusions 
 

 An efficient implementation of the spectral volume method has been successfully carried out for 2D scalar and 
the Euler equations. Two different approaches to compute the flux integrals more efficiently, the partial quadrature 
(PQ) and quadrature free (QF) approaches, have been developed and evaluated for both 3rd and 4th-order SV 
schemes. For a 3rd order SV scheme, the PQ and QF approaches require 22% and 72% fewer flux calculations than 
the traditional approach, respectively, and for a 4th order SV scheme, the PQ and QF approaches require 28% and 
72% fewer flux calculations than the traditional approach, respectively. The savings is obviously significant in 2D, 
but it does not end here. In 3D, the thousands of flux calculations per SV required in the traditional approach will 
literally be reduced to only dozens. For all approaches, it has been found that the nearly optimum order of accuracy 
can be obtained in both the L1 and L∞ norms with respect to density errors. A simplified curved boundary treatment, 
which significantly reduces complexity of the numerical implementation, has been developed and employed with 
success. Results for the case of subsonic flow around a NACA 0012 airfoil using both a linear and quadratic 
boundary representation have been compared, and spurious entropy production at the airfoil surface is much less 
profound in the quadratic boundary case. The linear boundary representation was also used with 3rd and 4th-order SV 
schemes for the case of subsonic flow over a cylinder, but we were only able to obtain convergent numerical 
solutions using a quadratic boundary for this case. The extension of the QF approach to the 3D scalar and Euler 
equations is now under way, and will be reported in a future publication. 
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