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The high-order quadrature-free spectral volume (SV) method is extended to handle local 
adaptive hp-refinement (grid and order refinement). Efficient edge-based adaptation 
utilizing a binary tree search algorithm is employed. An adaptation criteria is selected which 
focuses computational effort near discontinuities, and effectively reduces the physical area of 
the domain necessitating data limiting for stability. This makes the method very well suited 
for capturing and preserving discontinuities with high resolution. Both h- and p- refinement 
are presented in a general framework where it is possible to perform either or both on any 
grid cell at any time. Several well-known inviscid flow test cases, subjected to various levels 
of adaptation, are utilized to demonstrate the effectiveness of the method. 

I.      Introduction 
he spectral volume (SV) method is a recently developed finite volume method for hyperbolic conservation laws 
on  unstructured grids.1-7 The SV method belongs to a general class of Godunov-type finite volume method8-9, 

which has been under development for several decades, and is considered to be the current state-of-the-art for the 
numerical solution of hyperbolic conservation laws. For a more detailed review of the literature on the Godunov-
type method, refer to Wang1, and the references therein. Many of the most popular numerical methods, such as the 
k-exact finite volume10-11, the essentially non-oscillatory (ENO)12-13, and weighted ENO14 methods are also 
Godunov-type methods. A thorough review and comparison of these methods can be found in Wang.15 The SV 
method is also closely related to the discontinuous Galerkin (DG)16-20 method, a popular finite-element method for 
conservation laws. The DG method has also been extended for use with local adaptive hp-refinement by Remacle et 
al.21 and Flaherty et al.22 Both the SV and DG methods employ multiple degrees of freedom within a single element, 
but the SV method avoids the volume integral required in the DG method. Each simplex in the SV method utilizes a 
“structured” set of sub-cells to support a polynomial reconstruction for the conserved variables, and a nodal set to 
support a polynomial reconstruction for the flux vector. For a more thorough comparison of the SV and DG 
methods, refer to Wang.1,15   
 The accuracy of the SV method is heavily dependent on both the grid and the degree of polynomial 
interpolation. Adaptive hp-refinement is used to locally refine or coarsen both the grid and solution polynomial as 
the flow develops. It is often desirable to refine the grid near discontinuities, and to refine the polynomial near fine 
smooth features, to avoid the high computational cost of global refinement. This is the focus of the current work.The 
paper is organized as follows. In Section 2, we review the basic formulation of the quadrature-free SV method. After 
that, the adaptive hp-refinement procedure is described in detail in Section 3. Numerical results for several inviscid 
flow test cases, including flow in the presence of strong shock waves and flow over curved bodies, are presented in 
Section 4. Finally, conclusions and some possibilities for future work are summarized in Section 5. 

II. Review of the Quadrature-Free Spectral Volume Method 
 Consider the multidimensional conservation law 
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on domain Ω × [0,T] and 3R⊂Ω with the initial condition  
                                                                                  ),,,()0,,,( 0 zyxQzyxQ =                                                                (1b) 
and appropriate boundary conditions on ∂Ω. In (1), x,y, and z are the Cartesian coordinates and (x,y,z)∈  Ω, t ∈  [0,T] 
denotes time, Q is the vector of conserved variables, and f, g and h are the fluxes in the x, y and z directions, 
respectively. Domain Ω is discretized into I nonoverlapping triangular (2D), or tetrahedral (3D) cells. In the SV 
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method, the simplex grid cells are called SVs, denoted Si, which are further partitioned into CVs, denoted Ci,j, which 
depend on the degree of the polynomial reconstruction. Examples of partitions supporting linear, quadratic and cubic 
reconstructions are shown in Figure 1.  
 

                                                            

                                  (a)                                                       (b)                                                      (c) 

Figure 1. Partitions of a triangular SV supporting linear, quadratic and cubic data reconstructions, shown in 
(a), (b) and (c), respectively. 

 
Volume-averaged conserved variables on the CVs are then used to reconstruct a high-order polynomial inside the 
SV. To represent the solution as a polynomial of degree m, we need N pieces of independent information, or degrees 
of freedom (DOFs). Where N is calculated as follows: 
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where d is the spatial dimension of the problem. The DOFs in the SV method are the volume-averaged conserved 
variables at the N CVs. Define the CV-averaged conserved variable for Ci,j as 
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where Vi,j is the volume of Ci,j. Given the CV-averaged conserved variables for all CVs in Si, a polynomial pi(x,y,z) 
∈  Pm (the space of polynomials of at most degree m) can be reconstructed such that it is a (m+1)th order accurate 
approximation to Q(x,y,z) inside Si. 
                                                  ( ) ( ) ( )1,,,, ++= m

i hOzyxQzyxp ,     ( ) iSzyx ∈,, ,     i=1,…,I,                                          (4) 
where h is the maximum edge length of all the CVs. This reconstruction can be solved analytically by satisfying the 
following conditions: 
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This polynomial pi(x,y,z) is the (m+1)th order approximation we are looking for as long as the solution Q(x,y,z) is 
smooth in the region covered by Si. The reconstruction is expressed more conveniently as 
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where Lj(x,y,z) ∈  Pm  are the shape functions which satisfy 
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Integrating (1) in Ci,j, we obtain 
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where  F= (f,g,h), Ar  represents the rth face of Ci,j , n̂  is the outward unit normal vector of Ar, and K is the number of 
faces in Ci,j. More details of this, including representative plots of the shape functions can be found in Wang and 
Liu.2  
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A nodal set, such as those shown in Figure 2, is selected from Hesthaven23 and used to support a degree m+1 
polynomial reconstruction for the flux vector.   
 
   

               

                                  (a)                                                       (b)                                                      (c)                   

Figure 2. Nodal sets in a triangular SV supporting quadratic, cubic and quartic data reconstructions for the 
flux vector, shown in (a), (b) and (c), respectively. 

The flux vector F can be computed at any point (x, y, z) by the following  
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where Ns is the number of nodes in the nodal set, calculated from (2), Fi is the flux vector evaluated at node i , and 
Mi(x,y,z) are the shape functions defined by the nodal set which satisfy: 
                                                                                ( ) .,, jnjjjn zyxM δ=                                                                     (10)  

Some representative examples of the shape functions are shown in Harris et al.7 
                                                                          
The average of (9) over a particular face  is given by 
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where iM are the face-averaged node-based shape functions for that face evaluated in the standard element. This can 
be done either analytically using Mathematica24 or the like, or numerically using Gauss quadrature formulas.   
 
The face integral in (8) is then given as 
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where nF is the dot product of (11) with n̂ . This expression is exact for internal faces. For faces on SV boundaries, 
we use  
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where LnF ,  and RnF ,  denote the face-averaged normal component of the flux vector due to the SV to the left and 

right of the interface, respectively, and αc is taken as the maximum absolute eigenvalue as in the Rusanov flux25, or 
the dissipation matrix as in the Roe flux26, which is evaluated at the face center. RQ and LQ are the face-averaged 
conserved variables due to the SV to the right and left of the interface, respectively.  
 

IV.      Adaptive hp-Refinement 
 

Local adaptive grid refinement is used to focus computational effort near discontinuities and fine smooth 
features to reduce the overall computational effort in the entire domain. h-refinement involves modification of cell 
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sizes while p-refinement involves modification of polynomial orders. We wish to utilize either or both on-the-fly as 
the flow develops. Both h- and p-refinement are carried out using only local operations to maximize the efficiency 
and accuracy of the procedure.  

 
1. H-refinement 
 

In this study, since we are only dealing with triangular SVs, h-refinement is basically a matter of grid 
regeneration, with no required modification of the solver itself. An efficient hierarchical edge-based adaptation 
algorithm is employed, which allows the grid to be adapted any number of levels from the base (coarsest) grid at any 
time. Let εi be an error indicator for edge i, and let εmax be the maximum allowable value of εi. If for any edge i, 
εi>αεmax, then edge i is split into two edges, otherwise edge i is maintained. Here α>0 is a user specified constant. 
This procedure begins with edges in the base grid (root edges), and continues until the maximum number of 
adaptation levels is reached. The error indicator εi is always computed using the solution from the previously 
adapted (finest) grid. When the above procedure completes, new SVs are added to the grid as a result of the split 
edges. There are essentially four different situations that can occur when the grid is adapted, as shown in Figure 3. 

 
                          (a)                                       (b)                                       (c)                                       (d)  
 
Figure 3. Four situations that can occur when a SV is refined; (a) No edges are split so the SV is unchanged; 
(b) Two new SVs are generated due to one split edge; (c) Three new SVs are generated due to two split edges; 
(d) Four new SVs are generated due to three split edges. 
 
For each SV in the grid, the difference in adaptation level for that SV’s edges is allowed to be no greater than one. 
This is done to ensure that all grids are comparable in quality to the base grid. When the creation of new SVs is 
complete, new cell-averages are then computed using 
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where kjM , are the node-based shape functions for node k averaged over CV j, and Qi,k are the conserved variables 

evaluated at node k  of SV i. If node k exists within a SV in the previously adapted grid, then Qi,k are obtained from 

(6) using CV-averaged solutions jiQ ,  from that SV. Otherwise, if node k exists at the junction between two or more 

SVs in the previously adapted grid, then Qi,k  are obtained from an average of (6) among all SVs which have the 
physical location of node k in common. The above interpolation gives rise to an inherent loss of precision associated 
with coarsening of the solution, which is an unavoidable consequence of the h-refinement procedure.  
 

The error indicator εi  is computed using 

                                                                            u
iii Aψε ∆= ,                                                                         (15) 

where ∆ψi is the difference of ψ (a variable of interest) between the two endpoints of edge i, Ai is the area of edge i, 
and u>0 is a user specified parameter. For all cases considered here, u=1/2 and εmax is taken to be the L2 norm of ε 

over all edges.   
 
 
 
2. P-refinement  
 

p-refinement, or order refinement, allows for a distribution of SVs where the degree of the polynomial 
reconstruction may vary from one SV to another. Unlike h-refinement, p-refinement does require significant 
modification of the solver itself. Among other things, the terms N and Ns in (6) and (9) are no longer constant, but 
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depend on the level of p-refinement of the current cell. In addition, computation of the face-averaged terms in (13) is 
not as straightforward as before. For example, consider the case where a linear SV is adjacent to a quadratic SV, as 
shown in Figure 4.   

                                                           
Figure 4. Two adjacent SVs with p-refinement levels differing by one. The left SV contains a linear partition, 
and the right SV contains a quadratic partition. 

 
Here, the face-averaged shape functions for CV faces on SV boundaries must be computed in parts. For the corner 
CVs in the quadratic partition (right), the face-averaged shape functions are computed as usual, but the face-
averaged shape function for the side CV  must be computed in two parts to coincide with the intersection of that CV 
face with the face of the adjacent CV in the linear SV. With the face-averaged shape functions computed in this 
manner, the face-averaged terms in (13) can be readily computed.  
 

Let the error indicator εi  for edge i be the same as is defined in (15), and εmax is again taken to be the L2 norm of 
ε over all edges. If for any edge i, εi>βεmax, then the degree of polynomial reconstruction, for the cells adjacent to 
edge i, is increased by 1. Similarly, if εi<γεmax, then the degree of polynomial reconstruction, for the cells adjacent to 
edge i, is decreased by 1. Here γ,β>0 are user specified constants  
 
 
3. Hp-refinement 

 
For simplicity, simultaneous h- and p-refinement are carried out in a decoupled manner. H-refinement is first 

performed to generate a new grid, and p-refinement is then performed to increase or decrease the degree of the 
polynomial reconstruction for each SV in the new grid. As new SVs are created as a consequence of h-refinement, 
the polynomial degree is set to minimum (1 in this case), and may not be increased as a result of p-refinement. This 
is a safeguard to ensure that the lowest possible degree polynomial is used near very high gradient regions. Such a 
measure should minimize oscillations due to extreme flow phenomena such as shock waves.   
 

III. Numerical Tests 
 
In this section, the SV method with local adaptive hp-refinement is evaluated for the 2D Euler equations. Several 

well known inviscid flow test cases are utilized to demonstrate the effectiveness of local hp-refinement. In all cases 
involving shock waves, the TVD limiter presented in Harris et al.7 is employed to maintain a stable numerical 
scheme. In all cases involving curved-wall boundaries, the approach of Krivodonova and Berger27 is utilized to 
maintain low computational cost. This approach was successfully implemented for the SV method in Harris et al.7 
All of the following cases employ the Rusanov25 flux, and for time integration we use either the 2nd or 3rd order 
Strong Stability-Preserving28 (SSP) Runge-Kutta scheme. 

 
1.   Subsonic flow over NACA 0012 and NASA GA(W)-1 airfoils 

 
As a demonstration of the p-refinement technique, subsonic flow at Mach=0.4, and angle of attack of 5o around 

both a NACA 0012 and a NASA GA(W)-1 airfoil is considered. The grid used for the NACA 0012 case is semi-
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structured, while the grid for the NASA GA(W)-1 case is fully unstructured. Both Grids are shown in Figure 5. The 
outer boundary is 20 chord lengths away from the center of the airfoil in both cases.   

 

  
   

                                               (a)                                                                                        (b) 
 
Figure 5. Grids for subsonic flow over airfoils; (a) semi-structured grid for NACA 0012 airfoil (48x16x2 
triangles); (b) irregular grid for NASA GA(W)-1 airfoil (2,722 triangles). 

     
For this case, the SVs near the farfield are orders-of-magnitude larger than the SVs near the airfoil surface. Thus, to 
prohibit adaptation near the farfield, it is necessary to remove the area weighting in (15) for this case. Also, ψ in (15) 
is taken to be the Mach number.  
 

As a test of the p-refinement technique, a converged solution from a 2nd order simulation is subjected to 1 level 
of p-refinement and run until convergence. This case will be subsequently denoted as the 2-3 case. Thus, the 
resulting solution will contain some 2nd order SVs and some 3rd order SVs. Mach contours for this simulation, as 
well as uniform 2nd and 3rd order simulations for comparison, are shown in Figure 6. Figure 6d shows Mach contours 
for the 2-3 case and for a uniform 3rd order case for comparison. It is evident that Mach contours for the 2-3 case 
agree reasonably well with the 3rd order contours, and the large errors present near the airfoil in the 2nd order case are 
eliminated in the 2-3 case.  
 

  
 

(a)                                                                                        (b) 
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                                        (c)                                                                                          (d) 
 

Figure 6. Contours of Mach number for subsonic flow over a NACA 0012 airfoil; (a) 2nd order (4,608 DOFs); 
(b) 3rd order (9,216 DOFs); (c) 1 level of p-adaptation starting from the converged 2nd order solution shown in 
(a) (6,519 DOFs); (d) The 1 level case shown with the 3rd order case to illustrate differences.  
 
The convergence history for this case is shown in Figure 7. It is apparent that the 2-3 case costs slightly more than 
the 2nd order case in terms of required time steps, but it costs much less than the 3rd order case. This is encouraging, 
as the 2-3 case agrees with the 3rd order case extremely well at the airfoil surface (which is where a lift/drag 
calculation would take place), for significantly less computational cost than that required for a full 3rd order 
simulation. Figure 8 clarifies which SVs are increased to 3rd order for the 2-3 case. It is clear that the majority of 
SVs in the domain are still 2nd order, and 3rd order SVs are only used in regions of largest change in Mach number. 
 

                   
Figure 7. Convergence history for subsonic flow over NACA 0012 airfoil.  The red circles are for a uniform 
3rd order case, while the blue line is adapted 1 level from  a converged 2nd order solution (i.e. the portion 
below around 50,000 time steps is the 2nd order scheme by itself, and after that is the 1 level adapted case with 
some 2nd order SVs and some 3rd order SVs). 
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(a)                                                                                         (b) 
 

Figure 8. Schematics showing the status of p-refinement for subsonic flow over NACA 0012 after refining 
from a converged 2nd order solution. Black regions represent 3rd order SVs, while gray regions represent 2nd 
order SVs; (a) zoomed-out view; (b) zoomed-in view.  
 

 The above study is repeated for the NASA GA(W)-1 airfoil shown in Figure 5b. Figure 9 shows Mach contours 
for this case, and Figures 10 and 11 show the convergence history and refinement status, respectively. This case uses 
a finer grid, so the results are not quite as discernible as with the NACA 0012 case, but none-the-less, a smoother 
and more accurate solution is attained for a slightly higher cost than a 2nd order simulation.                 
 

  
 

                                         (a)                                                                                        (b) 
 

  
 

                                          (c)                                                                                      (d) 
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Figure 9. Contours of Mach number for subsonic flow over a NASA GA(W)-1 airfoil; (a) 2nd order (8,166 
DOFs); (b) 3rd order (16,332 DOFs); (c) 1 level of p-adaptation starting from the converged 2nd order solution 
shown in (a) (11,958 DOFs); (d) The 1 level case shown with the 3rd order case to illustrate differences.  
 

             
 
Figure 10. Convergence history for subsonic flow over a NASA GA(W)-1 airfoil.  The red circles are for a 
uniform 3rd order case, while the blue line is adapted 1 level from  a converged 2nd order solution (i.e. the 
portion below around 50,000 time steps is the 2nd order scheme by itself, and after that is the 1 level adapted 
case with some 2nd order SVs and some 3rd order SVs). 

 

  
 

                                          (a)                                                                                     (b) 
 

Figure 11. Schematics showing the status of p-refinement for subsonic flow over a NASA GA(W)-1 airfoil 
after refining from a converged 2nd order solution. Black regions represent 3rd order SVs, while gray regions 
represent 2nd order SVs; (a) zoomed-out view; (b) zoomed-in view.  
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2.Transonic flow over a NACA 0012 airfoil 

 
As a demonstration of the h-refinement technique, transonic flow at Mach=0.9, and angle of attack of 1o around 

a NACA 0012 airfoil is considered. The base grid used for this simulation is the same as that used in the previous 
section.  Here the error indicator (15) is computed based on density and total energy, and again the area weighting is 
removed to avoid unnecessary refinement in the farfield. This case involves shock waves on both the upper and 
lower surface of the airfoil, so the aforementioned TVD limiter is utilized to maintain stability. A converged 2nd 
order solution is again taken as the initial condition, and grid is then re-adapted 3 times and then frozen for the 
remainder of the simulation.   

 
Figures 12 and 13 show the computational grids and Mach contours, respectively, for 1, 2, 3 and 4 levels of 

adaptive h-refinement.  It is evident that without refinement, the shock waves are smeared over several grid cells and 
the solution is of low quality. As the adaptation level is increased, the grid density in the vicinity of both shock 
waves and expansions is increased markedly. This produces a much higher quality solution with more precisely 
captured and finely resolved shock waves.  

 
 

        
        
                                          (a)                                                                                            (b) 
 

        
   
                                          (c)                                                                                           (d) 
 
Figure 12. Grids for 2nd order solution of transonic flow over NACA 0012 airfoil with adaptive h-refinement; 
(a) 1 level (3,349 triangles); (b) 2 levels (9,337 triangles); (c) 3 levels (30,498 triangles); (d) 4 levels (92,551 
triangles); A converged 2nd order solution on the base grid (Figure 5a) is used as the initial condition for all 
cases. The grid is re-adapted 3 times (once every 100 time steps for the first 300 time steps), and then frozen 
for the remainder of the simulation. 



 
American Institute of Aeronautics and Astronautics 

 
 

11 

        
        
                                                  (a)                                                                                     (b) 
 

        
   
                                                  (c)                                                                                     (d) 
 
Figure 13. Mach contours for 2nd order solution of transonic flow over NACA 0012 airfoil with adaptive h-
refinement; (a) 1 level (10,047 DOFs); (b) 2 levels (28,011 DOFs); (c) 3 levels (91,494 DOFs); (d) 4 levels 
(277,653 DOFs); A converged 2nd order solution on the base grid (Figure 5a) is used as the initial condition for 
all cases.  
 
 
3.  Mach 3 wind tunnel with a step 
 

This problem was studied extensively by Woodward and Colella29, and has been widely used to assess the 
performance of shock-capturing methods. The 2D wind tunnel is 3 units long and 1 unit wide, with a step of 0.2 
units high located at 0.6 units from the tunnel inlet. The initial condition is a Mach 3 right-going uniform flow. 
Inviscid wall boundary conditions (reflective) are used for tunnel wall boundaries, while inflow and outflow 
boundary conditions are used at the inlet and exit of the wind tunnel. It is well known that the corner of the step is a 
singularity, and often leads to a spurious Mach stem at the downstream bottom wall, and an erroneous entropy layer 
at the bottom wall. In Woodward and Colella29, various numerical treatments were used to remedy these artifacts. In 
the present study, no special treatments were used for the singularity to see how the singularity affects the numerical 
solutions.  

 
Both 2nd and 3rd order simulations are carried out, using 1-3 levels of h-refinement. Figure 14 shows the grid and 

density contours for a 2nd order simulation under 0, 1, 2, and 3 levels of h-refinement, respectively. All plots show 
30 even contours of density between 0.054957 and 4.7699. It is clear that as the adaptation level is increased, the 
grid becomes exceedingly dense in the vicinity of the shock wave, near the corner of the step, and downstream of 
the spurious Mach stem.  Also as the adaptation level is increased, the shock is captured more accurately with less 
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smearing, and the spurious Mach stem downstream of the step has been reduced in size to the extent that it is barely 
discernible. Figure 15 shows similar results for a 3rd order simulation. In both 2nd and 3rd order cases, the spurious 
Mach stem is completely eliminated for 2 or more levels of h-refinement. 

 
For comparison, Figure 16 shows 2nd and 3rd order results for a uniform grid that is much finer than the base grid 

used for the above h-refinement cases. It is evident that even using only 1 level of h-refinement produces a much 
better solution with far fewer degrees of freedom than that on the uniform grid.   

                      

                      
                                                                                        (a) 

                       

                           
                                                                                        (b)               
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                                                                                       (c) 

                     

                     
                                                                                       (d) 
 

Figure 14. Density contours and grid for 2nd order SV scheme under adaptive h-refinement at time=4.0; (a) 
No adaptation (base grid, 26,238 DOFs); (b) 1 level of adaptation (43,179 DOFs at last time step); (c) 2 levels 
of adaptation (84,678 DOFs at last time step); (d) 3 levels of adaptation (190,017 DOFs at last time step); Grid 
is refined from base grid every 100 time steps.  
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                                                                                        (a) 
 

                     

                     
                                                                                        (b) 
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                                                                                             (c) 
 

Figure 15. Density contours and grid for 3rd order SV scheme under adaptive h-refinement at time=4.0; (a) 
No adaptation (base grid, 52,476 DOFs); (b) 1 level of adaptation (88,800 DOFs at last time step);(c) 2 levels 
of adaptation (175,200 DOFs at last time step); Grid is refined from base grid every 100 time steps. 

                          
                                                                                        (a) 

                          
                                                                                        (b) 

 

Figure 16. Density contours and grid for SV schemes on uniform grid at time=4.0; (a) 2nd order, 111,438 
DOFs; (b) 3rd order, 222,876 DOFs;  
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V.   Conclusions 
 

The high-order quadrature-free spectral volume method has been successfully extended for use with local 
adaptive hp-refinement. A hierarchical edge-based adaptation algorithm was employed for high efficiency. The p-
refinement methodology was effectively utilized for the case of subsonic flow over both a NACA 0012 airfoil and a 
NASA GA(W)-1 airfoil. The h-refinement technique was employed with success for transonic flow over a NACA 
0012 airfoil, and for an unsteady supersonic problem with strong shocks. The extension of the adaptive quadrature-
free SV method for use with implicit solvers for the Euler and Navier-Stokes equations will be the subject of future 
research. 
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