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A Study of Viscous Flux Formulations for an Implicit P-
Multigrid Spectral Volume Navier Stokes Solver

R. Kannan*, Y. Sun†, and Z.J. Wang‡

Department of Aerospace Engineering, Iowa State University, Ames, IA 50011

In this paper, we improve the Navier-Stokes flow solver developed by Sun et al based on
the spectral volume method in the following two aspects: the development of a more efficient
implicit/p-multigrid solution approach, and the use of a new viscous flux formula. An
implicit preconditioned LU-SGS p-multigrid method developed for the spectral difference
(SD) Euler solver by Liang et al is adopted here. In the original SV solver, the viscous flux
was computed with a local discontinuous Galerkin-type approach. In this study, a penalty
approach based on the first method of Bassi and Rebay is suggested and tested for both the
Laplace and Navier-Stokes equations. The second method of Bassi and Rebay is also tested
for the Laplace equation. Their convergence properties are studied in the context of the
BLU-SGS approach. Fourier analysis revealed some interesting advantages for the penalty
method over the LDG method. A convergence speedup of up to 2 orders is obtained with the
implicit method. The convergence was further enhanced by employing a p-multigrid
algorithm. The numerical results are very promising and indicate that the approach has a
great potential for 3D flow problems.

Introduction
he spectral volume (SV) method was originally developed by Wang, Liu et al for hyperbolic conservation laws
on unstructured grids [1-5]. The spectral volume method is a subset of the more generic Godunov type finite

volume method, which is the starting block for the development of a plethora of methods such as the k-exact finite
volume [6,7], the essentially non-oscillatory (ENO) [8,9], and total variation diminishing (TVD) [10] schemes. The
spectral volume method can be viewed as an extension of the Godunov method to higher order by adding more
degrees-of-freedom (DOFs) in the form of subcells in each cell (simplex). The simplex is referred to as a spectral
volume (SV) and the subcells are referred to as control volumes (CV). As in the finite volume method, the
unknowns (or DOFs) are the subcell-averaged solutions. A finite volume procedure is employed to update the
DOFs.

Recently Sun et al [11] implemented the SV method for the Navier Stokes equations. The local discontinuous
Galerkin (LDG) [12] approach was used in the SV method to discretize the viscous fluxes. The LDG approach
alternates between the right and the left directions for obtaining the CV averaged gradient and the residual
respectively. More recent numerical tests indicated that the computational results using LDG are somewhat
dependent on how the faces are oriented, especially for unstructured and non uniform grids. In this paper, we test
another technique to discretize the viscous fluxes. The new procedure is a penalty-like method based on the
algorithm developed by Bassi and Rebay [13]. This procedure is more symmetrical than LDG and hence is better
suited for unstructured and non uniform grids. Fourier analysis revealed better accuracy, higher time step limit (for
explicit simulations) and faster convergence for the penalty approach when compared to LDG.

The convergence properties of high order methods like SV, SD and the discontinuous Galerkin (DG) are
generally poor with explicit time marching approaches. In this paper, we adopt an efficient preconditioned implicit
LU-SGS approach. The original LU-SGS approach was developed by Yoon and Jameson on structured grids [14],
and later improved upon by Jameson and Caughey [15], Chen & Wang [16] using an element Jacobi preconditioner.
It was used by Liang et al [17] to solve the Euler equations with a p-multigrid algorithm for the SD method. We are
able to achieve significant speedup using the implicit approach.
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In addition, we also use a p-multigrid algorithm to enhance the convergence. The p-multigrid method employs
smoothing operators which hasten the convergence by using the coarse levels constructed by reducing the order of
the interpolation polynomial p. This method was initially proposed by Ronquist and Patera [18], and extended by
Maday and Munoz [19]. The acceleration of the convergence by the p-multigrid algorithm on Euler equations was
demonstrated by Bassi and Rebay [20], Fidkowski et al [21], Nastase and Mavriplis [22] and Luo et al. [23] with the
DG method and Liang et al [17] for the SD method.

The paper is organized as follows. In the next section, we review the basics of the SV method. The new
penalty formulation will be presented, together with a detailed linear analysis in section 3. The results are then
compared with the LDG scheme. The implicit LUSGS scheme is discussed in section 4. In Section 5, we focus on
the nonlinear FAS p-multigrid method. Section 6 deals with the different test cases conducted during this study.
Finally conclusions from this study are summarized in Section 7.

Basics of the Spectral volume method
Consider the general conservation equation
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in domain Ω with the appropriate initial and boundary conditions . In (1.1), x and y are the Cartesian coordinates
and (x,y) ∈ Ω, t ∈ [0,T] denotes time, Q is the vector of conserved variables, and fi and gi are the inviscid fluxes
in the x and y directions, respectively. fv and gv are the viscous fluxes in the x and y directions, respectively. Domain
Ω is discretized into I non-overlapping triangular (2D) cells. In the SV method, the simplex grid cells are called SVs,
denoted Si , which are further partitioned into CVs, denoted Cij , which depend on the degree of the polynomial
reconstruction. Figure 1 shows linear, quadratic and cubic partitions in 2D.

a b c
Figure 1. Partitions of a triangular SV . Linear, quadratic and cubic reconstructions are shown in a, b and c
respectively.

We need N unknown control volume solution averages (or DOFs). N is calculated using the below formula
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where m is the degrees of the polynomial, constructed using the CV solution averages. The CV averaged conserved
variable for Cij is defined as
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where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a mth degree polynomial can be
constructed such that it is (m+1)th order approximation to Q. In other words, we can write the polynomial as
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where the shape functions Lj(x,y) satisfy
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Equation 1.1 is integrated over the Cij. This results in the below equation
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where F
r

= ),( vivi ggff −− where Ar represents the rth face of Cij, n
r

is the outward unit normal vector of Ar

and K is the number of faces in Cij. The surface integration on each face is done using a (m+1)th order accurate
Gauss quadrature formula. The fluxes are discontinuous across the SV interfaces. The inviscid fluxes are handled
using a numerical Riemann flux like the Rusanov flux [24], the Roe flux [25] or AUSM flux [26]. The handling of
the viscous fluxes is discussed in the next section.

Spectral volume formulation for the diffusion equation

A. Discretization of viscous fluxes
The following 2D diffusion equation is considered first in domain Ω with the appropriate initial and boundary

conditions
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where µ is a positive diffusion coefficient. We define an auxiliary variable
uq ∇= (2.2)

Equation 2.1 then becomes
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Using the Gauss-divergence theorem, we obtain
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where ijq and iju are the CV averaged gradient and solution in Cij, K is the number of faces in Cij, Ar represents

the rth face of Cij and n is the unit surface normal vector. As the solution u is cell-wise continuous, u and q at SV
boundaries are replaced by numerical fluxes q and u . The above equations thus become
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The commonly used approach for obtaining the numerical fluxes is the LDG approach. In this approach, the
numerical fluxes are defined by alternating the direction in the following manner [12] 

Luu = (2.8)

Rqq = (2.9)

A1. Penalty approach
It can be seen (from equations 2.8 and 2.9) that LDG is inherently unsymmetric. A symmetric approach was given
by Bassi and Rebay [13], in which the numerical fluxes are defined by

)(*5.0 LR uuu += (2.10)
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)(*5.0 LR qqq += (2.11)

Analysis by Brezzi et al [27] showed that the approach may be unstable in some situations. In this paper, we suggest
the following the penalty approach to obtain the numerical fluxes:

)(*5.0 LR uuu += (2.10)
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A2. Second approach of Bassi and Rebay(BR2)
The penalty approach is definitely more symmetrical than LDG. However, the implementation results in a non-

compact stencil. We now give the formulation of BR2 [28], which is compact. The BR2 formulation is slightly
different from the above two methods. Two different gradients are evaluated for residual computation:

I.The first gradient is referred to as the self gradient. It is computed using the solution from the cell in
consideration. In other words, there is no contribution from the neighboring cells. This gradient is utilized
for computing the viscous fluxes through the SV boundary faces.

II. The second gradient is referred to as the averaged gradient. It is computed by using the averaged solution
obtained from the left and the right sides of the SV interfaces. This gradient is used for the internal faces of
the SV

BR2 uses the concept of lifting functions. These lifting functions, +r
r

and −r
r

(which are actually polynomials)

can be viewed as corrections to the self gradient. The CV averaged lifting functions +r
r

and −r
r

are obtained using
equations 2.12 and 2.13
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where + and – refer to the current cell and the neighboring cell, V is the volume of the SV. Given the CV averaged

lifting functions, +r
r

and −r
r

, mth degree polynomials can be constructed such that they are (m+1)th order

approximation to the CV averaged lifting functions. These polynomials are the actual lifting functions +r
r

and −r
r

.
The gradients used for the SV boundary faces are given by
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(2.14)

B. Analysis of LDG, the penalty formulation and BR2 methods
B1. One dimensional analysis

In this analysis, we follow a technique described by Zhang and Shu [29] and focus on linear, quadratic and
cubic reconstructions. The SV is partitioned into two equal CVs for the second order, three CVs for the third order
and four CVs for the fourth order. For the sake of simplicity, let us first consider a linear partition (shown in figure
2). In this case, the formulations can be cast in the following form:
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where A,B,C,D and E are constant matrices. We now seek general solution of the following form

ikx
k etutxu )(ˆ),( = (2.16) 

where k is the index of modes (k=1,2..) representing the wave number. Obviously, the analytical solution for

equation 2.1 is tkikxetxu
2

),( −= . The solution we are looking for can be expressed as













2,

1,

j

j

u

u
=













2,

1,

ˆ

ˆ

k

k

u

u
2/3,jikx

e (2.17) 

Substituting 2.17 into 2.15, we obtain the advancement equation:
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Where the amplification matrix is given by

G = ikhe 2− A + ikhe− B + C + ikhe D + ikhe2 E (2.19) 
 

The above method can be easily extended to 3rd and 4th orders. In general, all but one of the Eigen values of G is
made up of spurious modes and is damped rapidly. The error associated with the scheme, convergence properties
can be determined by analyzing the non spurious mode

1,jx 2,jx

.

2/1,jx 2/3,jx 2/5,jx

Figure 2. Linear spectral volume in 1D
B1.1 Spatial Analysis
Figure 3 shows the variation of the principal Eigen value with
respect to the non dimensional frequency χ (=kh) for the 2nd

order case. This is also referred to as the Fourier footprint.
Figure 4 shows the error at lower wave numbers. It is clear
that the errors associated with the penalty formulation are
lower than that of LDG. Moreover, the error associated with
the penalty scheme is lower than the LDG error. This means
that the system is damped faster in the penalty case and hence
converges faster. The situation is similar for the 3rd order as is
seen from figures 5 and 6. Thus in general, we expect the
penalty scheme to converge faster than the LDG for the 2nd

and 3rd orders. The principal Eigen value lies on top of the
y=--x2 parabola for the fourth order (figure 7). The fourth
order errors are too negligible (figure 8) to comment on
convergence phenomena. It must be noted that the matrices A
and E are zero matrices for the LDG and BR2 formulations. Figure 3. Fourier footprint for 2nd order scheme

Figure 4. Error associated at low wavenumbers
for the 2nd order scheme

Figure 5. Fourier footprint for 3rd order
scheme
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B1.2 Temporal Analysis
In this section, we compute the time step requirements of

the 3-stage Runge Kutta scheme. Table 1 lists the maximum

non-dimensional time step (
2dx

dtµτ = ) required for obtaining

a stable solution. It can be seen that the penalty and BR2
methods permit a higher time-step limit than the LDG method.
In fact, the time step permitted by the BR2 method is more than
double of that of the penalty method. Numerical experiments
verified the above conclusion.

Table 1. Maximum non-dimensional time step for obtaining stable solutions for the LDG, penalty and BR2
methods.

Case 2nd order

(stability)

3rd order

(stability)

4th order

(stability)

LDG 0.157 0.0266 0.0109

Penalty 0.182 0.0322 0.0133

BR2 0.314 0.0784 0.0321

B2. Two dimensional analysis
In this analysis, we follow a technique described by Abeele et al [30] and focus on the linear reconstruction. The SV
is partitioned into 3 CVs. We had to use a basic unit, for imposing periodicity. In a one-dimensional case, the basic
unit was the spectral volume itself. It comprises of 2 SVs in 2D. The basic unit (only SVs are shown) is shown in
figure 9. This solution process would result in solving a [6*6] set of equations. The rate of change of the solution
(in the basic unit) can be written as a linear combination of solutions from the left (L), right(R), top (T), bottom (B)
and central(C) units. The formulations can be cast in the following form:

dt

d [ ]jiu , = L [ ]jiu ,1− + R [ ]jiu ,1+ + C [ ]jiu , + B [ ]1, −jiu + T [ ]1, +jiu (2.20)

Figure 8. Error associated at low wavenumbers
for the 4th order scheme

Figure 7. Fourier footprint for 4th order
scheme

Figure 6. Error associated at low
wavenumbers for the 3rd order scheme
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where L,R,C,B and T are constant matrices and [ ]jiu , is the

solution vector of the basic building unit. We now seek
general solution of the following form

))sin()cos(()(ˆ),( θθ yxik
k etutxu += (2.21)

where k is the index of modes (k=1,2..) representing the wave
number and θ is the direction of wave propagation. Obviously,

the analytical solution for equation 2.1 is tkikxetxu
2

),( −= . We

follow the method described in the 1D analysis section and
obtain the following result:

[ ]ku′ˆ =G(k,h) [ ]kû (2.22) 

 

Where the amplification matrix is given by

G = )cos(θikhe− L + )cos(θikhe R + C + )sin(θikhe− B + )sin(θikhe T (2.23) 
 

B2.1 Spatial Analysis
There is an extra degree of freedom, θ. Due to symmetry of the

system and of the building unit, we need to focus on θ varying
from 0 to π/4 radians. In this paper, we focus on these extreme
cases. Figures 10 and 11 show the variation of the principal Eigen
value with respect to the non dimensional frequency χ (=kh) for θ
= 0 and π/4 radians respectively. Figures 12 and 13 show the
errors at low frequencies. In general, the trends are qualitatively
similar to those obtained using 1D analysis. In addition, it can be
seen that the errors are much lower when θ = π/4 radians. This is
probably due to the way our SVs are defined (right triangles).

Figure 9. Basic Building block colored in
red; the neighbors are used in analysis

Figure 10. Fourier footprint for the 2D 2nd

order scheme for θ = 0 radians

Figure 11. Fourier footprint for the 2D 2nd

order scheme for θ = π/4 radians

Figure 12. Error associated at low
wavenumbers for the 2D 2nd order scheme for
θ = 0 radians
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B2.2 Temporal Analysis
As in the 1D analysis, we stick to the 3-stage

SSP Runge Kutta scheme. Table 2 lists the
maximum non dimensional time step required for
obtaining a stable solution. Once again, the penalty
and BR2 methods permit a higher time-step limit
than the LDG method. And the time step permitted
by the BR2 method is more than that of the penalty
method.

Table 2. Maximum non-dimensional time step for for obtaining stable solutions for the 2nd order, 2D LDG,
penalty and BR2 methods

Case θ = 0 θ = π/4

LDG 0.0267 0.0267

Penalty 0.0465 0.0465

BR2 0.0635 0.0635

Implicit LU-SGS formulation for the Spectral volume formulation
In order to solve the flow to a steady state from a nearly arbitrary initial guess, a relaxation scheme is needed. The
commonly used time integration scheme is the explicit multi-stage Runge Kutta scheme. The main advantage of the
Runge Kutta scheme is that it requires little memory for storage. In addition, this method is inherently simple and so
is easy to program. These are the main reasons for it being one of the most preferred methods of time integration.

The main bottleneck associated with the Runge Kutta scheme is the limit imposed on the time step. Euler (and
Navier Stokes) equations for realistic geometries entail a rather strict limit on the time step. Even though the above
can be circumvented by using a very high order (several RK steps) scheme, it is seldom used as it required lots of
storage and thus adversely affects its simplistic nature. Therefore, it is inevitable to use an implicit scheme.

In this paper, we use an implicit LU-SGS scheme for the temporal integration. This scheme has been in use for
solving higher order methods. Consider the equation given below

)(QR
t

Q =
∂
∂

(3.1)

where Q is the cell averaged solution vector of a spectral volume. At each current cell c, using the backward Euler

difference, (3.1) can be written as
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Figure 13. Error associated at low wavenumbers for
the 2D 2nd order scheme for θ = = π/4 radians
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where nb indicates all the neighbouring cells contributing to the residual of cell c. Therefore, the fully linearized
equations for (3.2) can be written as
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However, it costs too much memory to store the left-hand side implicit Jacobian matrices. Therefore, we employ a
LU-SGS scheme to solve (3.4), and it utilizes the most recent solution for the neighbouring cells,
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is the element (or cell) matrix, which is not very big for 2nd to 3rd order SV schemes. For instance, D is [6x6] for the

2D 3rd order SV wave equation. Neither do we want to store the matrices
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Equation (3.8) is then solved with a direct LU decomposition solver for an element and the solver is swept
symmetrically forward and backward through all the computational grid elements. Once (3.8) is solved to machine

zero, the unsteady residual is zero at each time step. For steady flow problem, we found that the term
t

Qc

∆
∆

*

in the

right-hand-side of (3.8) can be neglected and leading to quicker convergence. Note that
*

cQ∆ is the difference

between the current solution
*

cQ and the solution at the previous time level
n

cQ . In reality, the entire system is swept

several times in order to proceed to the next time level. As a result,
*

cQ∆ is influenced by the solution occurred

several sweeps ago. This introduces an under-relaxation effect. Hence, neglecting the
t

Qc

∆
∆

*

term accelerates the

convergence.

p-Multigrid Method
The Gauss-Seidel or Jacobi iterations produce smooth errors when applied on the above mentioned equations. The
error vector has its high frequencies nearly removed in a few iterations using a higher order polynomial; but low
frequencies are removed very slowly. The key idea of the p-Multigrid method is to solve the nonlinear equations
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using a lower order polynomial such that “smooth becomes rough” and low frequencies act like high frequencies.
Such a p-Multigrid method has been used for high-order discontinuous Galerkin method; see [31]. The p-Multigrid
method operates on a sequence of solution approximations of different polynomial orders. Therefore it offers the
flexibility of switching between higher and lower polynomial levels without changing the actual geometrical nodal
grid points.

To accomplish the communication between different levels, restriction ( 1−p
pI , 2

1
−
−

p
pI ) and prolongation ( p

pI 1− , 1
2
−
−

p
pI )

operators are required in addition to the aforementioned relaxation scheme as a smoother. Restriction consists of
moving solutions and their residuals at the unknown points from a space of higher polynomial order to a lower
polynomial order. Prolongation refers to a reverse procedure in which lower order polynomial solution correction is
redistributed as corrections to the solutions of the unknown points at a higher polynomial order.

Classical multigrid method begins with a two-level process. First, iterative relaxation is applied using the higher
order polynomial, thus basically reducing high-frequency errors. Then, a “coarse-grid” correction is applied, in
which the smooth error is determined at the lower polynomial level. This error is interpolated to the higher
polynomial level and used to correct the existing higher order solutions. Applying this method recursively to solve
the lower polynomial level problems leads to multigrid.

Defining three polynomial levels from the highest to the lowest as p, p-1 and p-2, we want to solve:

ppp rQR =)( , (4.1)

and the rhs pr is zero for the highest level polynomial;

111 )( −−− = ppp rQR ; (4.2)

222 )( −−− = ppp rQR . (4.3)

We want to employ the implicit LU-SGS schemes as the smoothers for all three levels. For simplicity, the following
steps summarise a standard two-grid scheme with a V cycle at p and p-1 levels.

• Improve pQ by application of a few times the smoother similar as equation (3.8)
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• Restrict the latest solution pQ to the coarser level for an approximate solution 1−pQ
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− = (4.5)

• Compute the defect on the finest level

( ) ( )pppppp QRQRrd −=−= (4.6)

• Compute the right hand side of equation (4.2) as
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• Improve 1−pQ by application of a few times the smoother
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• Correct the current solution on the finest level by

)(
0

111 −−− −+= pp
p
ppp QQIQQ (4.9)

• Improve pQ by application of a few times the iterative smoother to get pQ
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We can call the above two-grid V cycle recursively for p-1 and p-2 levels just behind the smoother (equation 4.8) to
accomplish a three-level V cycle. In fact, if it is called twice, a W cycle is constructed

Test Results
In this Section, numerical experiments are conducted using the penalty method. The following two cases are

presented.

A. 2D diffusion equation
A1. Accuracy study
In this section, we test the accuracy of the penalty scheme using the 2D diffusion equation:

0
2

2

2

2

=
∂
∂

−
∂
∂

−
∂
∂

y

u

x

u

t

u
, 2]1,0[),( ∈yx (5.1)

y
analytical exu )sin(= (5.2)

The steady state analytical solutions are specified at all the boundaries.

In tables 3, 4 and 5, we present the SV averaged L1 and Linf errors for the 2nd, 3rd and 4th orders respectively using
the LDG, penalty and BR2 formulations. It can be seen that the 2nd and the 4th order schemes reach their respective
orders asymptotically for all the schemes. We do experience a drop in order for the 3rd order (odd ordered) scheme.
This is under investigation. It can be observed that the LDG method produces the maximum errors in general.
Regular grids were used for the study (figure 14). The solution obtained using a 4th order stencil on a 40x40x2 grid
is shown in figure 15.

Table 3. Accuracy of 2nd order 2D diffusion equation on regular grids

Grid L1 error

(Penalty)

L1 order

(Penalty)

Linf error

(Penalty)

Linf order

(Penalty)

10x10x2 1.72e-03 - 5.99e-03 -

20x20x2 4.40e-04 1.97 1.52e-03 1.98

40x40x2 1.12e-04 1.97 3.85e-04 1.98

80x80x2 2.83e-05 1.99 9.71e-05 1.99

Grid L1 error L1 order Linf error Linf order

Figure 15. 4th order solution contours of
the equation 5.1 using a 40x40x2 grid

Figure 14. regular grid(10x10x2) used for
validation study
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(LDG) (LDG) (LDG) (LDG)

10x10x2 4.95e-03 - 1.41e-02 -

20x20x2 1.26e-03 1.98 3.72e-03 1.95

40x40x2 3.48e-04 1.90 9.78e-04 1.95

80x80x2 1.28e-04 1.65 2.63e-04 1.93

Grid L1 error

(BR2)

L1 order

(BR2)

Linf error

(BR2)

Linf order

(BR2)

10x10x2 2.28e-03 1.20e-02

20x20x2 4.90e-04 2.22 3.19e-03 1.91

40x40x2 1.12e-04 2.13 8.19e-04 1.96

80x80x2 2.65e-05 2.07 2.07e-04 1.98

Table 4. Accuracy of 3rd order 2D diffusion equation on regular grids

Grid L1 error

(Penalty)

L1 order

(Penalty)

Linf error

(Penalty)

Linf order

(Penalty)

10x10x2 8.67e-05 - 3.19e-04 -

20x20x2 1.43e-05 2.6 4.66e-05 2.78

40x40x2 2.66e-06 2.43 6.39e-06 2.86

80x80x2 5.53e-07 2.27 1.23e-06 2.38

Grid L1 error

(LDG)

L1 order

(LDG)

Linf error

(LDG)

Linf order

(LDG)

10x10x2 1.27e-04 - 2.81e-04 -

20x20x2 2.43e-05 2.38 5.41e-05 2.37

40x40x2 5.44e-06 2.16 1.27e-05 2.09

80x80x2 1.23e-06 2.10 2.96e-06 2.07

Grid L1 error

(BR2)

L1 order

(BR2)

Linf error

(BR2)

Linf order

(BR2)

10x10x2 9.49e-05 - 2.68e-04 -

20x20x2 1.31e-05 2.85 3.80e-05 2.82

40x40x2 2.14e-06 2.61 5.21e-06 2.88

80x80x2 3.90e-07 2.46 9.71e-07 2.42

Table 5. Accuracy of 4th order 2D diffusion equation on regular grids
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Grid L1 error

(Penalty)

L1 order

(Penalty)

Linf error

(Penalty)

Linf order

(Penalty)

10x10x2 3.69e-06 - 9.56e-06 -

20x20x2 2.35e-07 3.97 6.01e-07 3.99

40x40x2 1.49e-08 3.98 3.74e-08 4.00

Grid L1 error

(LDG)

L1 order

(LDG)

Linf error

(LDG)

Linf order

(LDG)

10x10x2 4.30e-06 - 9.74e-06 -

20x20x2 2.97e-07 3.8 6.74e-07 3.8

40x40x2 2.06e-08 3.9 4.43e-08 3.9

Grid L1 error

(BR2)

L1 order

(BR2)

Linf error

(BR2)

Linf order

(BR2)

10x10x2 4.17e-06 - 9.99e-06 -

20x20x2 2.76e-07 3.91 6.68e-07 3.90

40x40x2 1.78e-08 3.95 4.28e-08 3.95

A2. Convergence study
In this section, we perform numerical experiments to study the
effect of the implicit LU-SGS smoother and the p-multigrid
algorithm. The comparison of the convergence speeds between the
implicit and the explicit Runge Kutta schemes are shown in
Figures 16, 17 and 18 for second, third and fourth orders
respectively. It can be seen that the speedup increases with
increasing the order of the interpolation polynomial. We attain a
speedup of nearly 20 for 4th order simulations. Thus it is more
practical to use implicit algorithms for higher order methods.
Figures 19 and 20 show the effect of the p-multigrid on the 3rd and
4th orders respectively. It can be seen that the multigrid results in a
speed-up of 3 for the 3rd order and nearly 7 for the 4th order. Thus
a combination of implicit LU-SGS and p-multigrid results in a
speedup which is more than 2 orders in magnitude!

Figure 16. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the 2D diffusion equation
using a 2nd order scheme
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B. 2D Navier Stokes equations
We were able to extend the viscous formulation for Navier stokes equations. The inviscid fluxes were handled using
an approximate Riemann solver (Rusanov flux). The penalty method was used for the viscous fluxes.
A1. Flow over an airfoil
In this section, we simulate flow over a naca0012 airfoil. The flow was transonic at Mach 0.5 and had a zero angle
of attack. The Reynolds number was 1000. Figures 21, 22 and 23 show the convergence histories for 2nd, 3rd and 4th

orders respectively. It can be seen that the speedup at higher orders is massive (more than 2 orders), especially for
4th order. The 3rd and 4th order explicit schemes limit the CFL to a few hundredths. In contrast, the implicit schemes
have a CFL limit of more than a hundred. This is one the main reasons for obtaining the above mentioned speedups.

Figure 19. Convergence history using
single level and 2 level FMG LU-SGS
schemes for the 3rd order 2D diffusion
equation.

Figure 20. Convergence history using
single level, 2 level FMG and 3 level FMG
LU-SGS schemes for the 4th order 2D
diffusion equation.

Figure 17. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the 2D diffusion equation
using a 3rd order scheme

Figure 18. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the 2D diffusion equation
using a 4th order scheme
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Figure 24 shows the effect of p-multigrid for the 3rd order simulation. The lower level operations were carried out
using a larger time step. This was done to eliminate the low frequency errors at a faster rate. Multigrid for the 4th

order was found to be unstable and is under investigation. Fig. 25 shows the Mach contours computed with linear
and quadratic SVs. The solution gets smoother and smoother with the increasing of the order of the polynomial
reconstruction. The wake region looks more refined and continuous for the 3rd order case. The difference between
the 3rd and the 4th order plots were negligible.

Figure 21. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the flow over naca0012
airfoil using a 2nd order scheme

Figure 22. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the flow over naca0012
airfoil using a 3rd order scheme

Figure 23. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the flow over naca0012
airfoil using a 4th order scheme

Figure 24. Convergence history using
single level and 2 level FMG LU-SGS
schemes for the flow over naca0012
airfoil using a 3rd order scheme
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(a) (b)

Figure 25. Mach contours around the NACA0012 airfoil at zero degree of attack, Re=1000, M=0.5. (a)
2ndorder; (b) 3rd order

A2. Flow over an flat plate
In this section, we simulate laminar flow over a flat plate. naca0012 airfoil. The flow was transonic at Mach 0.5.
Figures 26, 27 and 28 show the convergence histories for 2nd, 3rd and 4th orders respectively. Figure 29 shows the
effect of p-multigrid for the 3rd order simulation. These convergence plots look qualitatively similar to those
obtained for the flow over naca0012 airfoil. It must be noted that the speedups obtained for this simulation are
slightly lower than those obtained for the airfoil case. This is because of the surface grid: airfoil utilizes a curved
boundary for the 3rd and 4th orders. This makes the system stiffer and the effect of implicit/multigrid schemes result
in enormous speedups.

Figure 26. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the flow over a flatplate
using a 2nd order scheme

Figure 27. Convergence history using
explicit R-K and implicit LU-SGS
schemes for the flow over a flatplate
using a 3rd order scheme
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Conclusions
In the present study, we suggested a new penalty approach and implemented the BR2 method for computing

viscous fluxes. Fourier analysis was done for both the new formulations and the previously used LDG scheme. The
results of the Fourier analysis implied that the new methods converge faster, have better accuracy and can handle
bigger time steps (explicit simulations) than the LDG method. In particular, the BR2 method was able to handle
much larger time steps than the penalty approach. The accuracy of the three methods was tested by performing an
accuracy study using the 2D Laplace equation.

We also incorporated the implicit LU-SGS scheme into the SV method. This resulted in extraordinary speedups.
A p-multigrid was also implemented for the diffusion and the NS equations. The implicit solver and the p-multigrid
were successfully coupled in order to enable efficient simulation. A combination of the above gave speedups of
more than 2 orders of magnitude. Future research includes the following areas

1.Perform some analysis on the p-multigrid method.
2. Test the 2nd formulation of Bassi and Rebay for Navier-Stokes equations.
3.Some temporal analysis for the implicit schemes.
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