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ABSTRACT

A 2n tree (capable of supporting binary, Quadtree and
Octree) based viscous Cartesian grid generation method
has been successfully developed for complex
geometries. Compared with an Octree data structure, the
2n tree data structure supports anisotropic grid
adaptations in any of the coordinate directions in an
arbitrary manner. This capability enables high
resolution of flow features such as shocks, shear layers
and wakes with high aspect ratio cells. In order to
properly resolve viscous boundary layers, a viscous
layer grid is “inserted” between the Cartesian grid and
the body surface through a projection technique. The
thickness of the viscous layer grid can be determined
based on the expected boundary layer thickness.
Algorithms to automatically detect and resolve narrow
gaps, and geometrically critical features have been
developed. The method completely avoids cell-cutting,
and produces overall good quality computational grids.
Several demonstration cases are included to showcase
the capability of the method. 

INTRODUCTION

It is generally recognized that unstructured grid–based
CFD algorithms offer the best promise for automation in
fluid flow simulations. The last decade has seen
tremendous progress in unstructured grid methods.
Types of unstructured grids include classical triangular
or tetrahedral grids1–5, quadrilateral or hexahedral
grids6, prismatic grids7 or mixed grids8–9.  The most
appealing properties of unstructured grids are the
geometric flexibility and the ease in which the grid can
be adapted according to flow features.  Tetrahedral grids
are  the  easiest  to   generate.    Many   well–known  grid 

generation algorithms, such as the advancing front10 and
the Delauney triangulation method11 have been
developed to generate tetrahedral grids for complex
geometries.  However, experiences have indicated that
tetrahedral grids are not as efficient and/or accurate as
hexahedral or prismatic grids for viscous boundary
layers.  On the other hand, prismatic grids and
hexahedral grids can resolve boundary layers more
efficiently but they are more difficult to generate than
tetrahedral grids.  Many CFD researchers have come to
the conclusion that mixed grids (or hybrid grids) are the
way to go. 

Recently,  there has been a renewed interest in using
Cartesian grids for complex geometries12–17.  Coupled
with a tree–based data structure and grid adaptation,
with respect to both the geometry and the flow field,
these methods have been demonstrated to be very viable
tools for inviscid flows, with very complex geometry.
The main advantages of the Cartesian grid methods are
the followings:  (1) automatic grid generation, (2)
automatic grid adaptation and (3) simplified data
structure.  One of the most appealing properties of a
Cartesian grid is its efficiency in filling space with a
minimum number of cells and faces given a certain grid
resolution. With the adaptive Cartesian grid approach,
grid–independent solutions can be obtained with
automated solution-based grid adaptations13.  To
achieve the same solutions with a non–adaptive mesh
would be very expensive.  One obvious drawback of the
adaptive Cartesian grid method is its inability to support
directional grid adaptation required in viscous boundary
layer type flow problems.  Isotropic grid adaptations in a
boundary layer are not only too expensive but
inefficient as well14.  Furthermore, the irregular cut cells
near the solid wall boundaries have been shown to
produce severely non–positive numerical stencils for the
Navier–Stokes equations and may cause convergence/
stability problems.  More recently, several approaches
were developed to extend the Cartesian grid method to
viscous flows.  One was developed by Karman18 and
another by Wang19.  Karman employed an adaptive
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Cartesian/fixed prism grid to tackle viscous flows.  A
disadvantage of Karman’s approach is the use of the
fixed prism grid, which partly negates the effectiveness
of the adaptive Cartesian grid.  To eliminate this
drawback, Wang developed the adaptive Cartesian/
adaptive prism grid approach for viscous flows.  The
computational grid is adaptive in both the Cartesian and
the prism regions.  In a successful 2D demonstration20,
grid independent viscous solutions were achieved
automatically.  A common drawback of Cartesian/prism
grid approaches, however, is that a complex cell-cutting
procedure needs to be performed near the Cartesian/
prism interface, resulting in very irregular, non-convex
cut cells.
  
Another very promising method to extend the adaptive
Cartesian grid approach to viscous flows is to “project”
layers of viscous layer grids from the Cartesian grid to
the geometry6, 21-23. This approach is named the
viscous Cartesian approach in this paper. One
appealing feature of the viscous Cartesian approach is
that nearly all computational cells generated are convex,
and that cell-cutting is avoided. In this approach, the
geometry is used only for Cartesian grid “blocking”, and
projection. In theory, a valid surface discretization of
the geometry is not necessary to generate a valid volume
grid. The surface grid is automatically generated when
the Cartesian grid “front” is projected to the geometry23.
As a consequence, the viscous Cartesian grid method
does NOT require the  surface geometry to be
“water-tight”. Therefore, it can handle “dirty”
geometries with overlaps, and small cracks (small
relative to the near body Cartesian grid size). This
feature is potentially a considerable advantage over
conventional grid generators, which require a “clean
water tight” geometry to be available before grid
generation can start.  In this paper, the viscous Cartesian
approach is further extended to 2n tree data structures to
support anisotropic grid adaptations. Furthermore, a
narrow gaps detection algorithm has been developed to
automatically generate viscous layers grids inside
narrow gaps. The method is tested on a variety of
complex geometries, including the F/A 18C aircraft.
Sample flow simulations are also carried out with
solution based grid adaptations to demonstrate the
capability of the 2n tree data structure in efficiently
resolving flow features.

ADAPTIVE CARTESIAN GRID GENERATION

Geometry Entity
As explained in the introduction section, the viscous
Cartesian grid method is capable of supporting arbitrary

geometric entities as long as they can be used to block
Cartesian cells, and project Cartesian grid points. In
terms of operations, the geometry needs to support the
following three operations:

1) If_Intersect_Cartesian_Cell(Cartesian_Cell);
2) Is_Point_Inside(Point); and
3) Project_To_Geometry(Point);

Operation 1) return TRUE if the geometry intersects a
Cartesian cell. Otherwise, it returns FALSE. Operation
2) is TRUE if a given point is inside the geometry,
otherwise, FALSE. Operation 3) is the projection
operator, which returns the projection of a given point to
the geometry. In the current study, a triangulated surface
geometric entity has been implemented, and all the
operations can be defined easily.

Data Structures and Cartesian Grid Generation
One of the popular data structures for adaptive Cartesian
grid is the Octree. The drawback of Octree is that only
isotropic grid refinement is supported. In this study, a 2n

tree data structure has been used. The 2n tree supports
binary, Quadtree and Octree type of subdivisions, and
therefore allows the adaptive Cartesian grid to be
refined in a non-isotropic manner. 2n tree is a
hierarchical data structure in which each non-leaf tree
node can have either 2, 4 or 8 child nodes.  All possible
Cartesian cell subdivisions supported by the 2n tree are
illustrated in Figure 1. Note that a Cartesian cell can be
sub-divided in an arbitrary manner. To enable reverse
tree traversal, each node also keeps the address of its
parent node. Therefore, two-way tree-traversal can be
performed very efficiently.

Usually an adaptive Cartesian grid is generated by
recursively subdividing a single root cell.  In this study,
the adaptive Cartesian grid is started from a forest of
root cells in order to add more flexibility in controlling
the size of the computational domain and  aspect ratios
of Cartesian cells.  Since the root forest must cover the
entire computational domain, the surface geometry is
contained in the root Cartesian cells.  The size of the
Cartesian cells intersecting the geometry is controlled
by two parameters, disT and disN. Parameter disN
controls the Cartesian cell size in the geometry normal
direction, whereas disT specifies the Cartesian cell size
in the geometry tangential direction. The ratio disT/disN
determines the maximum aspect ratio in the Cartesian
grid. The recursive sub-division process stops when all
the Cartesian cells intersecting the geometries satisfy
the length scale requirements. For the sake of solution
accuracy, it is very important to ensure that the
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Cartesian grid is smooth. In the present study, the sizes
of any two neighboring cells in any coordinate direction
cannot differ by a factor exceeding 2. The use of the
2ntree data structure makes high aspect ratio Cartesian
cells possible. This property can translate into
considerable efficiency gains when anisotropic grid
adaptations are used to resolve flow features. As an
example, an Octree grid is compared with a 2ntree  grid
generated for the F-16 aircraft. Both grids used the same
parameter disN, while the 2ntree used a disT 5 times the
size of disN, which means the 2ntree Cartesian grid can
generate Cartesian cells with a maximum aspect ratio of
5.  The Octree Cartesian grid consists of 559,938 cells,
whereas the 2n tree Cartesian grid has only 87,046 cells.
The saving in the number of cells with the 2n tree
compared to Octree is over a factor of 6. The side view
of the Octree and 2n tree Cartesian grids  are shown in
Figure 2. Note that at places where the geometry surface
is approximately aligned with any of the coordinate
directions, non-isotropic, high aspect ratio cells are
automatically generated with the 2n tree. Even if the
geometry surface is not exactly aligned with a
coordinate direction, non-isotropic cells can still be used
to reduce the total number of cells, as shown in this
figure.

Cartesian Grid Front Generation and Smoothing
It is easy to notice that if there are narrow gaps in the
geometry smaller than the near body Cartesian grid cell
size, the narrow gaps may be completely invisible to the
grid generator, and may be meshed over. In order to
resolve geometrically important narrow gaps, small
Cartesian cells must be generated inside the narrow
gaps. Therefore, narrow gaps in the geometry must be
detected first. An efficient ray-tracing algorithm has
been developed to detect narrow gaps in the geometry.

In order to “insert” a viscous layer grid between the
Cartesian grid and the body surfaces, Cartesian cells
intersected by the geometry must be removed.
Cartesian grid cells which are intersected by the body
surface are called Cut Cells (CC), and cells which are
located inside the body surfaces are named Hole Cells
(HC) and the rest of the cells are called Normal Cells
(NC).  All the CC and HC are  “blocked” (turned off)
from the Cartesian grid, leaving an empty space
between the Cartesian grid and the body surface.  Both
the 2n tree (for the Cartesian grid) and the ADT data
structures (for the surface triangles) are extensively
utilized for efficient search operations. 

After this step, all the exposed Cartesian faces are
gathered together and form the so-called Cartesian grid
front.  The exposed Cartesian faces are then smoothed
using a Laplacian smoother to form a smoother front,
which is to be projected to the body surface. An
example Cartesian front generated for a missile
geometry is shown in Figure 3. The front before and
after smoothing is also displayed in Figure 3.  

VISCOUS LAYER GRID GENERATION

Projection of the Cartesian Front to the Body Surface
After the smoothed front in the Cartesian grid is
obtained, each node in the front needs to be connected to
the body surface to form the viscous layer grids.  The
“foot prints” of the layer grids on the body surface have
the same topology (or connectivity) as the Cartesian
front.  With this assumption, the viscous layer grids are
naturally “blended” with the adaptive Cartesian grid,
eliminating the need of cell-cutting currently adopted by
many Cartesian grid generators. Another major
advantage of the approach over cell cutting is that nearly
all computational cells  generated are convex, boosting
the stability and convergence properties of flow solvers.
The projection from the Cartesian grid front to the body
surface is performed according to the minimum distance
rule.  To efficiently identify the triangles which are
close to a given point, an Alternating Digital Tree
(ADT) data structure24 is used to store the bounding
boxes of these triangular faces.  The ADT data structure
is a binary tree data structure, in which each tree node
has two child nodes.  The search complexity using ADT
tree is close to Log2(M) rather than M (M being the
total number of triangles). 

Geometric Feature Preservation
The front projection based on the minimum distance
criterion may smear critical geometric features,
especially near non-convex corners.  This is shown in
Figure 4.  The geometrically “critical” concave corner
never connects with a front node, and is therefore not
represented in the projected surface grid.  In order to
eliminate this problem, a geometric feature recovery
algorithm was developed.  The algorithm first detects all
the critical features in the geometry automatically.  Then
all the critical features are preserved through a feature
recovery technique, in which front nodes are
reconnected to the critical features. 

Critical Feature Detection:  Each edge of a surface
triangulation is examined to see whether it is a “critical
edge”. If the angle between the normals of the two
triangles sharing an edge is larger than a threshold (e.g.
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30 degrees), the edge is classified as a “critical edge”.
All Critical edges are what must be preserved in
Cartesian front projections. 

Critical Feature Preservation:  In order to preserve the
geometric features, Cartesian front nodes must be
connected to these features directly.  Since the topology
of the projected body grids is the same as that of the
Cartesian front, any critical edge must be matched to a
group of connected edges on the Cartesian front.  The
projected surface grids of the missile geometry with and
without feature recovery are shown in Figure 5a and 5b.
Note that the critical intersection curves between the
fins and the missile body are properly resolved with
feature preservation. 

Surface Grid Smoothing and Layer Grid Generation
The projected surface grid from the Cartesian grid front
is usually not smooth because the projections are based
on the minimum distance to the triangulated surfaces.
The surface grid is also dependent on the local surface
curvatures, and the initial triangulation.  After the
feature recovery step is carried out, the surface grid
becomes even more unsmooth. A Laplacian smoothing
algorithm is therefore applied to improve the grid
quality.  

By connecting each point on the Cartesian grid front to
the corresponding projected point on the surface, only a
single layer of viscous grids is produced.  To perform a
meaningful viscous flow simulation, many more layers
of viscous grids are necessary.  Therefore this single
layer of viscous grids is further divided into (user
specified) arbitrary number of layers with arbitrary grid
point distributions. 

FLOW SOLVER AND SOLUTION BASED GRID 
ADAPTATION

A cell-centered finite volume flow solver supporting
arbitrary  cells was used to perform flow simulation20.
The flow solver is second-order accurate with a cell-
wise least-squares linear reconstruction technique.
Roe’s approximate Riemann solver25 was used to
compute the inviscid flux. The viscous flux was
computed with an efficient and compact approach
described in Reference 20, which is also linearity-
preserving. An improved LU-SGS scheme with fast
convergence characteristics26 was employed for time-
integration. 

To achieve automation in flow simulation, solution-
based grid adaptation is essential. To take full advantage

of the anisotropic grid adaptation capability offered by
the  2n tree, the three coordinate directions of each
Cartesian cell are examined independently for possible
adaptation. Since the viscous layer grid is generated by
projecting the Cartesian front to the geometry, it cannot
be independently adapted. However, the number of
viscous layers, and the grid clustering factor can be
changed based on local flow features. Both first and
second  derivative  based  grid  adaptation  criterial have
been developed. The following cell-wise parameters are
used as the adaptation indicators in x-direction

(1)

(2)

where q is a flow variable, τix is a first-derivative based
indicator, while πix is a second-derivative based
indicator.  The adaptation indicators in other directions
can be computed similarly. The standard deviation of
the parameter is computed as:
 

(3)

where N is the total number of Cartesian cells. The the
following conditions are used for grid adaptation:

1) if τix > c*τ, cell i is to be refined in x direction;
2) if τiy > c*τ, cell i is to be refined in y direction;
3) if τiz > c*τ, cell i is to be refined in z direction;

where c is a control parameter determining the total
number of cells to be refined. In this study, c is chosen
to be 1.

TEST CASES

Transonic Flow over ONERA M6 Wing
This firs test case is the inviscid transonic flow over an
ONERA M6 wing configuration. The M6 wing has a
leading-edge sweep angle of 30 degrees, an aspect of
3.8, and a taper ratio of 0.562. The airfoil section of the
wing is the ONERA “D” airfoil, which is a 10%
maximum thickness-to-chord ratio conventional section.
The flow was  computed at a Mach number of 0.84, and
an angle of attack of 3.06. To resolve the  flow field near
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the wing with reasonable accuracy, a box source with
corner coordinates (-0.25, -0.25, 0) and (1.25, 0.25,
1.25) was added to control Cartesian grid distributions.
Cartesian grid  cells inside the box  are required to
satisfy ∆x = 0.02, ∆y = 0.02, ∆z = 0.04. The far field
was placed 20 chords away from the wing.  The initial
viscous Cartesian mesh is shown in Figure 6, which
consists of 83,997 cells, and 262,129 faces. The grid has
two viscous layers between the Cartesian grid and the
body. The computed pressure contours on the wing
surface and the plane of symmetry are displayed in
Figure 7. It is clear that the leading edge of the wing
does not have enough grid resolution, and the lamda-
type shock structure is quite heavily smeared. Three
levels of solution-based grid adaptations were then
performed after the solutions fully converged on the
coarser meshes. The adaptation criteria were pressure
and total velocity gradients. The level 3 viscous
Cartesian grid and the computed pressure contours are
shown in Figure 8. The Level 3 grid has 395,117 cells
and 1,278,336 faces. Note that the computational mesh
was not only adapted near the shocks, and shear layers
after the trailing edge, but also adapted in smooth flow
regions, which is important to achieve high global
solution accuracy.  The lamda-shock structure was
sharply captured on the level 3 grid. The computed
pressure coefficient distributions are also compared with
experimental wind tunnel data27  at six spanwise
stations in Figure 9. We can observe that the solution on
the level 2 grid is nearly identical to that on the level 3
grid, indicating that the solution on the level 2 grid is
nearly grid-independent. Generally speaking, the
computed pressure coefficient profiles agree quite well
with experimental data except at the root station where
viscous effects are important.  

Transonic Flow Over a Wing/Pylon/Store Configuration
The second test case is performed for a wing/pylon/store
configuration reported in Reference 28. The
configuration consists of a clipped delta wing with a 45
degree sweep composed of a constant NACA64010
symmetric airfoil section. The wing has a root chord of
16 inches, a semispan of 13 inches, and a taper ratio of
0.134. The pylon is located at the midspan station and
has a cross section characterized by a flat plate closed at
the leading and trailing edges by a symmetrical ogive
shape. The width of the pylon is 0.294 inches. The four
fins on the store are defined by a constant NACA0008
airfoil section with a leading-edge sweep of 45 degrees,
and a truncated tip. The store is in the so-called carriage
position. The narrow gap detection algorithm was
applied to automatically detect the gap between the
pylon and the store, and fine grid cells were then

generated within the gap automatically. A cross section
grid through the narrow gap is displayed in Figure 10,
indicating that the gap is sufficiently resolved. The
initial viscous Cartesian grid and the level 3 solution-
adaptive grids are shown in Figure 11. Pressure
gradients were used as the adaptation criterion. The
initial grid consists of 128,659 cells, and 435,195 faces,
and the level 3 grid has 268,137 cells and 900,929 faces.
The flow solutions are presented at a Mach number of
0.95, and an angle of attack of 0. The computed pressure
contours on the wing lower surface and store for the
initial and the level 3 grids are displayed in Figure 12.
The shock waves were sharply captured on the level 3
grid. The computed pressure coefficients on the store
are also compared with experimental data at two
circumferential stations in Figure 13. The agreement
with experimental is quite good considering that no
viscous effects were included.

Viscous Cartesian Grid for Complete F/A-18 Aircraft
The final test geometry is the F/A 18 fighter aircraft
including loaded missiles. The original input geometry
was in PLOT3D patches. CFDRC’s geometric modeler
and grid generator CFD-GEOM was used to clean the
geometry, and produce a surface triangulation with
60,263 faces. The feature detection algorithm was
employed to automatically track all the critical edges,
and the narrow gap detection algorithm was employed
to identify small gaps in the geometry. The surface grid
generated is shown in Figure 14, which consists of
41,890 polygons. The grid has a total of 375,285 cells,
1,182,100 faces, and it has eight viscous layers with an
exponential clustering factor of 1.3.  This grid took
about half an hour to generate on a SGI O2 (R10000)
workstation.  The viscous Cartesian grid on the plane of
symmetry is displayed in Figure 15a, and a cutting plane
of the grid near the main inlet is shown in Figure 15b.
Note that small cells were generated inside the small
gap near the inlet. Due to the coarseness of the initial
surface triangulation, some geometric features are still
smeared. Improvements are being made to produce a
better grid for a flow simulation. 

CONCLUSIONS

The 2n tree adaptive viscous Cartesian grid
methodology developed in this study is capable of
automatically generating viscous computational grids
for complex geometries.  The 2n tree data structure
allows the Cartesian grid to be adapted in an arbitrary
manner to capture features efficiently. In addition, the
use of state-of-the-art data structures, such as the 2n tree
and ADT data structures, considerably reduces costs
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associated with various search operations in the method,
resulting in a very efficient overall methodology.
Furthermore nearly all grid cells are convex.  A
geometric feature detection and preservation algorithm,
and a narrow gap detection algorithm were shown to be
critical to the success of the method. Another unique
feature of the viscous Cartesian grid method is that valid
computational grids can be generated for “dirty
geometries” with overlaps or cracks. Solution based grid
adaptations were shown to be very effective in capturing
key flow features.  Extensive demonstrations with
viscous turbulent flows will be carried out in the near
future.
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Figure 1. Cartesian Cell Subdivisions Supported by 2n

Tree Data Structure
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(a)  Octree
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Figure 4.Illustration of a Smeared Concave Corner in Front Projection

Figure 5.Comparison of Projected Surface Grids with (a) and without (b) Geometric Feature Recovery

(a)

(c)(b)

Figure 3. (a) A Missile Geometry, (b) the Non-Smooth Cartesian Grid Front, and (c) the Smoothed Cartesian Grid
Front

Concave Corner
Front Nodes

Body Body

Before Feature Recovery After Feature Recovery

(a) (b)
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Figure 6. Initial Viscous Cartesian Grid for the
ONERA M6 Wing (131,657 cells, 417,551
faces)

Figure 7. Computed Pressure Contours on the Upper
Surface at Mach = 0.84, and a = 3.06

Figure 8.  Level 3 Solution-Adaptive Viscous Cartesian Grids and Computed Pressure Contours for ONERA Wing

Figure 9. Comparison between Computed and Experimental Surface Pressure Coefficient at Different Spanwise
Stations (a) 20% Semispan, (b) 44% Semispan, (c) 65% Semispan, (d) 80% Semispan, (e) 90%
Semispan, and (f) 95% Semispan

(a) (b) (c)

(d) (e) (f)
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Figure 12.  Computed Pressure Contours on the Lower Wing Surface at Mach = 0.9, α = 0

Φ

Figure 10.  A Cross-Section Cut in the Viscous Cartesian Grid near the Gap Between Pylon and Store

(a) (b)

Figure 11. Initial and Level 3 Solution Adaptive Viscous Cartesian Grids on the Lower Wing Surface and the
Plane of Symmetry

(a) (b)
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Figure 13. Comparison of Pressure Coefficient on the Store at Stations of (a) Φ  = 185, and (b) Φ  = 95 Degrees, Refer
to Figure 10 for the Definition of Φ

Figure 14. The Surface Grid Generated on the F/A 18 Fighter Aircraft with the Viscous Cartesian Grid Method

Figure 15.  The Viscous Cartesian Grid on the Plane of Symmetry, and a Cross-Section Grid near the Main Inlets

(a) (b)

(a) (b)


