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Abstract

 

A 2-D, solution-adaptive computational technique for generic moving-boundary
problems, including ones with topologic transformations, is presented. The geometry
of boundaries is represented by Composite Parametric Splines. Each boundary is
encapsulated by a thin, arbitrarily-stretched, extruded Prism grid which is allowed to
move and deform with the boundary. A single, stationary Cartesian grid is used to
mesh the regions away from boundaries. Two different methods of combining the
Cartesian and Prism grids while ensuring smoothness across grid interfaces are
developed and compared. A second-order-accurate, Navier-Stokes flow-solver using
a multi-stage inner iteration procedure for convergence acceleration is implemented.
Two computations that demonstrate the capabilities of the technique are presented.

 

Introduction

 

A wide variety of structured- and unstructured-grid techniques have been developed
[1-4] for reliable and accurate moving-boundary computations. However, most of
these still impose significant restrictions either on the complexity of the geometries
[2,3] or on the complexity of the motions and deformations that can be efficiently
handled [2-4]. Allowable topologic transformations remain particularly limited. The
aim of this work is to develop a fully-automated technique that minimizes these
restrictions as far as possible. The technique is based on combining the advantages of
unstructured, solution-adaptive Prism and Cartesian grids into a composite grid, and
on using an efficient, general-purpose, Arbitrary-Lagrangian-Eulerian Navier-Stokes
flow solver. Moving, deforming, extruded Prism grids [5-7] are exploited for their
generality, robustness, and automatability in handling complex geometries and
complex motions (including topologic transformations) near boundaries. A single,
stationary, Cartesian grid [8-10] is exploited for its generality, robustness, and
automatability for volume meshing away from boundaries. Since stretched Prism
grids are used, the technique is applicable to both viscous and inviscid flows. 



 

Grid Generation and Adaptation

 

The background Cartesian grid is generated by recursive, Quadtree-based
subdivision of a single Root cell that is initially defined so that it encloses the entire
solution domain and all boundaries in the problem [10-11]. 

Starting from a geometric definition of each boundary as a Composite Parametric
Cubic Spline, the Prismatic grid generation algorithm first divides the spline
segments to match a user-specified length-scale. Outward-pointing normals are
extruded from these division points by a user-specified distance, and any crossings in
the normals are eliminated by smoothing. The extruded points are then connected to
form a “ring” of quadrilaterals surrounding the boundary. Each of these
quadrilaterals is then treated as the Root cell of a Quadtree-based grid, which is then
recursively divided to meet user-specified criteria for cell dimensions, stretchings,
and curvature refinement.  The Quadtrees are then assembled into a “forest” defining
the Prism grid. Figure 1 shows an example Prism grid generated in this manner.

Figure 1. Prism Grid for an Amphibious Assault Vehicle Geometry, Showing the
Boundary Alignment of the Cells, and the Non-Isotropic Refinement
(with Stretching Toward the Boundary and in High Curvature Regions).

Once the Prism and Cartesian grids have been independently generated, the next step
is to create the composite grid. Two options for this have been explored in this work:
(i) Cell-Cutting; and (ii) Hole-Cutting. In the first approach, all Cartesian cells or
segments of cells that overlap Prism cells are eliminated. This involves “cutting” the
Cartesian cells that are intersected to form arbitrary (possibly non-convex)
polyhedra. The flow-solver treats all cells as arbitrary polyhedra in this option. In the
second option, all Cartesian cells that overlap the outermost layer or two of Prism
cells are marked as “interpolation cells” and all remaining 

 

overlapped

 

 Cartesian cells
are then eliminated, creating a “hole”. The flow-solver recognizes only quadrilateral
cells here and uses the overlap layers to interpolate the solution from one grid type to
the other. Figures 2(a) and 2(b) show examples of the two alternatives.

Since the two grid types are generated independently, their resolutions at grid
interfaces must be subsequently matched to preserve the solution accuracy there.



 

This is achieved by refining the cells of whichever is the coarser grid in the interface
region, as demonstrated in  Figures 2(a) and 2(b), in both of which the Cartesian grid
is initially at the uniform refinement level indicated by the largest cells shown.

Figure 2(a). Formation of Conservative Hybrid Grids: The Conservative Treatment
is Based on Cutting the Cartesian Cells and Eliminating All
Overlapped Cartesian Cells and Cell Fragments From the Hybrid Grid

Figure 2(b). Formation of Interpolation-Based Hybrid Grids: The Interpolation-
Based Treatment Retains a Sufficiently Thick Overlap Layer Between
the  Cartesian and Prism Cells for Use in Solution Interpolation

During boundary motion, the innermost layer of edges of the Prism grids remains
attached to the boundaries regardless of the motion or deformation of the boundaries,
while the outermost layer of edges remains fixed. The deformation of the leaf cells in
each Root cell of each Prism Quadtree-forest is computed by transfinite interpolation



 

on the geometry of the deformed Root quadrilateral.  Figures 3(a) and (b)
demonstrate the deformation and motion of Prism grids during rigid body motion.

Figure 3.  The Motion, Deformation, and Remeshing of Prism Grids

If the deformation of any Prism grid during motion violates one of several pre-
specified “quality” criteria (which include minimum and maximum elongation and
shear-distortion ratios), that Prism grid is regenerated from scratch and the solution
on the new Prism grid is interpolated from that on the old composite grid. Figures
3(b) and (c) show the Prism grids immediately before and immediately after
remeshing. Figure 3(d) shows the composite grid after several remeshing cycles. The
background Cartesian grid remains fixed regardless of the motion of boundaries.

Solution-based adaptation uses appropriately-scaled sensors of the curl and
divergence of the velocity field, following [12], namely:

                                    and     .

(a) The Original Prism Grids Before 
Commencement of Motion

(b) The Deformed Prism Grids After 
Thirteen Motion Steps
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Additional scaling is applied to account for stretching of cells in an arbitrary
direction, and special procedures are required to maintain grid smoothness across the
interfaces between the Cartesian and Prism grids during adaptation. During
remeshing, the spatial resolution on the new grid must everywhere be forced to at
least equal that on the old grid to prevent loss of the original solution adaptation.

 

Flow Solver

 

The system of equations solved is a Finite-Volume discretization of the Navier-
Stokes equations. For each cell in the domain, the discrete equation is given by
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, respectively, and the other terms have their usual meanings.  A linear Least-
Squares reconstruction scheme is used to obtain second-order spatial accuracy, while
a Crank-Nicholson time-integration scheme, given by

 (2)

is used to obtain second-order temporal accuracy. In order to enforce the Geometric
Conservation Laws [13], it is necessary to compute the face velocity over each time-

step from the mid-point value, , using an expression of the form

          , (3)
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 of the cell,  is the displacement vector of

the face centroid,  is the time-step, and  and  are the face edge vectors

at the end of time-steps  and , respectively.

In order to improve the computational efficiency, an explicit three-stage scheme with
local time-stepping is used, namely:
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where the 
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 values are chosen to appropriately adjust the damping and where the

condition  is equivalent to Equation (2).

 

Demonstrative Computations

 

Validation tests demonstrating agreement with analytical results for ideal
compressible flow over a cylinder and for preservation of the free-stream with
several configurations of moving and deforming grids were successfully performed.
The following two cases are selected to show the general capabilities of the
technique.

Flow Through Artificial Valves of a Human Heart

Figures 4 (a) - (i) show the valve location, the composite grid, and the pressure
distribution in the left ventricle and the left atrium at various times during the
complete opening and closing cycle of an artificial heart valve. The valves and valve
seats were treated as rigid bodies with prescribed motion. As the figures indicate, the
computation was performed using the “hole-cutting” option.

Figure 4. Grid, Geometries, and Pressure Distributions at Various Times During a
Complete Cycle of an Artificial Valve Fitted to a Human Heart
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(a)  After 0.02 seconds (b)  After 0.04 seconds (c)  After 0.06 seconds



 

Figure 4. Grid, Geometries, and Pressure Distributions at Various Times During a
Complete Cycle of an Artificial Valve Fitted to a Human Heart  

 

(cont.)

 

Figures 5 (a) - (c) show the geometry, grid, and solution near the beginning, mid-
point, and the end of the valve cycle. The figures show how the Prism grids move
with the valves to which they are attached, and how the Cartesian grid is
automatically refined and coarsened as the Prism grids travel across it, and how the
grid resolutions remain matched in the overlap zones throughout the motion.

(d)  After 0.08 seconds (e)  After 0.10 seconds (f)  After 0.12 seconds

(g)  After 0.16 seconds (h)  After 0.18 seconds (i)After 0.20 seconds  



 

Figure 5. Zoom Plots of the Valve Region at Three Times During a Complete Cycle
of an Artificial Valve Fitted to a Human Heart

Compressible Flow About a Fragmenting Boundary

In this computation, a boundary that is initially smooth and stationary, starts to
expand and deform in a quiescent, compressible ideal gas, as shown in figures 6(a)
through 6(d). When the thickness of the contraction region reaches a sufficiently
small value, the boundary is automatically split into two boundaries which continue
to move away from each other.  The topologic transformation is handled by
automatically redefining the number of closed boundaries in the domain, by
redefining the geometry of each new boundary from the original boundary, and by a
global remeshing and solution interpolation operation.  The same procedure is
applied in the case of boundary coalescence. Although the user is still required to
specify general geometric criteria for initiation of a topologic transformation, this
computation demonstrates the fully-automatic handling of a topologic
transformation.

(a)  After 0.02 seconds (b)  After 0.08 seconds

(c)  After 0.20 seconds



 

Figure 6. The Pressure Field and Grids Around a Deforming, Fragmenting Body

 

Concluding Remarks

 

The work presented here is based on the strategy of combining the advantages of
moving, deforming Prism grids in the vicinity of boundaries, and the advantages of a
stationary Cartesian grid away from boundaries. The results and test-cases attempted
demonstrate the capabilities of the two-dimensional version of the technique, and
show strong promise for full automation and handling of arbitrary geometries,
motions, and topologic transformations.  Based on general experience with extending
pure-Cartesian and pure-Prism grid generation techniques from 2-D to 3-D,
extension of the technique presented here to 3-D appears promising. Comparison of
results from the “cell-cutting” and “hole-cutting” approaches shows that while the
former is slightly more computationally-intensive, it is also slightly more accurate.

(b)  Shortly Before Fragmentation Occurs 

(a) Shortly After the Start of
Deformation

(d)  Shortly Before Cessation of Motion(c) Shortly After Fragmentation
Occurs
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